Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrochemie auf atomarer Ebene

30.04.2012
Forscher aus Jülich, Aachen und Japan beobachten die Bildung neuer Phasen auf der Oberfläche eines Supraionenleiters

Forscher aus Jülich, Aachen und Tsukuba in Japan zeigen eine neue Möglichkeit, elektrochemische Prozesse auf atomarer Skala zu studieren. Die Methode könnte helfen, die Energieeffizienz solcher Systeme zu verbessern.

Elektrochemische Systeme sollen zukünftig eine neue Form schneller und energiesparender Arbeitsspeicher in der Informationstechnologie ermöglichen. Die Methodik eröffnet außerdem neue Möglichkeiten der Untersuchung und Optimierung von Systemen, wie Brennstoffzellen, Batterien, chemischen Sensoren und Katalysatoren.

Nachzulesen sind die Ergebnisse in der aktuellen Ausgabe der renommierten Fachzeitschrift "Nature Materials" (DOI: 10.1038/NMAT3307).

Elektrochemische Prozesse sind gekennzeichnet durch Reduktions- und Oxidationsprozesse an der Phasengrenze zwischen einem Elektronenleiter
(Elektrode) und einem Ionenleiter (Elektrolyt). Bereits Michael Faraday
(1791-1867) hat die elektrochemische Metallabscheidung untersucht und als elektronischen Ladungstransfer zwischen positiv geladenen Metallionen und der Elektrode beschrieben, der zu der Metallabscheidung auf der Elektrode führt.

Eine Forschungsgruppe der Jülich Aachen Research Alliance (JARA), Sektion "Fundamentals of Future Information Technology", unter der Führung von Professor Rainer Waser untersucht gemeinsam mit einer von Professor Masakazu Aono (National Institute for Materials Science in Tsukuba, Japan) geleiteten Forschergruppe elektrochemische Zellen auf der Nanometer-Skala als mögliche Speicherelemente für die Informationstechnologie. Diese so genannten elektrochemischen Metallisierungszellen (ECM) könnten einmal die heutigen Arbeitsspeicher (so genannte Dynamic Random Access Memories DRAM, und die nichtflüchtigen FLASH-Speicher) ablösen, da sie prinzipiell schneller und energieeffizienter schalten können.

Die Funktionsweise der ECM-Zellen beruht auf Silber- oder Kupferionenleitenden Elektrolyten. Durch Anlegen von elektrischen Spannungspulsen werden metallische Fasern gebildet oder aufgelöst, so genannte Filamente. Dabei ändert sich der Widerstand des Gesamtsystems sprunghaft, von einigen Ohm (Kurzschuss durch das Filament) bis zu Millionen Ohm (ohne Filament). Die beiden Zustände repräsentieren die Booleschen Zustände 0 und 1, die die Grundlage der digitalen Datenverarbeitung bilden.

In früheren Arbeiten konnte die Gruppe um Professor Aono bereits zeigen, dass die ECM-Zellen ein viel besseres Potential hinsichtlich der Miniaturisierung in der Nanoelektronik aufweisen als die konventionellen

DRAM- und FLASH-Speicherelemente.

In ihren jüngsten Studien der detaillierten Prozessschritte beim Schalten von ECM-Zellen ist den Arbeitsgruppen nun ein entscheidender Durchbruch gelungen. Zunächst konnten die Forscher die Oberfläche eines so genannten Supraionenleiters, dem Rubidium-Silber-Iodid (chem. Formel: RbAg4I5), erstmals mit atomarer Auflösung abbilden (Abb. 1). Bisher konnte die Oberfläche eines Ionenleiters nicht mit einem Rastertunnelmikroskop untersucht werden, da für das quantenmechanische Tunneln von Elektronen aus der Mikroskopspitze die Materialien elektronenleitend sein müssen. Der Trick bestand nun darin, RbAg4I5-Proben zu verwenden, die eine geringe Konzentration an Verunreinigung (so genannte Dotierung) mit Eisenatomen enthielten. Diese Eisenatome erzeugen eine hinreichende Elektronenleitung, ohne dass die Ionenleitung dadurch beeinträchtigt wird.

Darüber hinaus haben die Forscher die Rastertunnelmikroskopie verwendet, um den Verlauf von Redoxreaktionen mit bisher unerreichter Massen-, Ladungs- und Ortsauflösung zu untersuchen. Es gelang ihnen, die Bildung einer neuen Phase (das ist ein chemisch homogener Bereich), die nur aus wenigen Atomen besteht, auf der Oberfläche eines Supraionenleiters zu stabilisieren, zu kontrollieren und sogar abzubilden. Der Abstand zwischen der Rastersonden Spitze und der Oberfläche beträgt dabei nur etwa 1 nm. Mit Hilfe des bekannten Abstands konnten die Forscher die Anzahl der Silberatome berechnen, die benötigt werden, um die Tunnellücke zu schließen. Ferner konnten sie dadurch auch Reaktionsparameter des elektrochemischen Prozesses ermitteln. Im Fall des ausgewählten Beispielsystems, des Supraionenleiters RbAg4I5, stellten sie fest, dass die elementaren Schritte der Phasenbildung im Nano- bis Mikrosekundenbereich durch die Geschwindigkeit der Bildung eines kritischen Silber-Keimes limitiert sind (Abb. 2). Das Verhalten des Systems konnten die Forscher durch die so genannte "atomistische Theorie der Nukleation" erklären. Sie sagt eine diskrete Änderung der thermodynamischen Größen vorher.

Die Arbeiten wurden finanziell durch das Deutsch-Japanische Kooperationsprogramm der Deutschen Forschungsgemeinschaft (DFG) gemeinsam mit der Japanese Science and Technology Agengy (JST) unterstützt.

Originalveröffentlichung:
Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces; Ilia Valov, Ina Sapezanskaia, Alpana Nayak, Tohru Tsuruoka, Thomas Bredow, Tsuyoshi Hasegawa, Georgi Staikov, Masakazu Aono, Rainer Waser; Nature Materials (2012), DOI: 10.1038/NMAT3307
Weitere Informationen:
Forschungszentrum Jülich: www.fz-juelich.de Jülich Aachen Research Alliance JARA: www.jara.org Forschung am Institut für Elektronische Materialien (PGI-7):
www.fz-juelich.de/pgi/pgi-7/DE/
Homepage von Professor Masakazu Aono (National Institute for Materials Science in Tsukuba, Japan):

http://www.nims.go.jp/mana/members/personal/Aono/

Ansprechpartner:
Prof. Dr. Reiner Waser, Institut für Elektronische Materialien (PGI-7), Forschungszentrum Jülich/ Institut für Werkstoffe der Elektrotechnik II (IWE II), RWTH Aachen, Tel. 02461 61-5811 oder 0241 8027812, E-Mail:

r.waser@fz-juelich.de

Pressekontakt:
Angela Wenzik, Wissenschaftsjournalistin, Forschungszentrum Jülich, Tel.
02461 61-6048, E-Mail: a.wenzik@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Angela Wenzik | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften