Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrischer Dreh für Datenspeicher

18.03.2011
Datendichte in Arbeitsspeichern könnte stark erhöht werden

Die Grundlagen für Speichermaterialien der Zukunft schaffen Forscher des Forschungszentrums Jülich und des Max-Planck-Instituts für Mikrostrukturphysik in Halle.

In einem ferroelektrischen Material haben sie erstmals direkt beobachtet, dass die Dipole, die in diesem Material die Information tragen, kontinuierlich ihre Orientierung ändern und sich daher auch ringförmig anordnen können, berichten die Wissenschaftler nun im Fachmagazin "Science".

Diese Erkenntnis gelang ihnen mit einer besonders kontrastreichen Form der hochauflösenden Transmissionselektronen-mikroskopie, welche die Jülicher Forscher entwickelt haben. Ringförmig angeordnete Dipole könnten es erlauben, Arbeitspeicher deutlich dichter mit Daten zu bepacken als bislang und dennoch schnell zu beschreiben und auszulesen. (Science DOI: 10.1126/science.1200605)

Ferroelektrika können ein Dilemma der Chip-Industrie lösen. Sie speichern Daten dauerhaft und lassen sich dennoch schnell beschreiben und auslesen. Magnetische Materialien dagegen, auf denen Festplatten basieren, fixieren Daten permanent, sind aber träge. Halbleiterspeicher wiederum operieren behände mit Daten, verlieren jedoch schnell ihr Gedächtnis, sodass die elektrischen Ladungen ihrer Kondensatoren ständig aufgefrischt werden müssen. Ferroelektrika vereinen die Vorteile beider Materialien. Und in ihnen lässt sich Information möglicherweise dichter packen als bislang angenommen. Sie könnten daher zum Material der Wahl für Arbeitsspeicher mit einer Dichte von mehreren Terabit pro Quadratzoll avancieren.

Ferroelektrische Materialien speichern Bits, indem ihre Elementarzellen, ihre kleinsten strukturellen Einheiten, polarisiert werden. Das heißt, ein elektrisches Feld verschiebt die positiv und negativ geladenen Atome leicht gegeneinander, sodass die Elementarzelle leicht verzerrt wird und ein Dipol entsteht. Dieser bleibt so lange erhalten, bis ein umgekehrt gepoltes Feld den Dipol umklappt oder die Polarisierung aufhebt. Jedem Bit ist in einem ferroelektrischen Speicher ein Bereich - Physiker sprechen von einer Domäne - zugeordnet, wo die Dipole alle gleich ausgerichtet sind. "Wir haben nun festgestellt, dass die Polarisierung unter bestimmten Bedingungen auch in sehr kleinen Domänen noch erhalten bleibt", sagt Chun-Lin Jia, der am Forschungszentrum Jülich forscht.

Festgestellt hatten die Forscher das an einem Ferroelektrikum, das am Max-Planck-Institut für Mikrostrukturphysik in Halle hergestellt wurde. Es enthält Blei, Zirkonium, Titan und Sauerstoff und wird Bleizirkonattitanat (PZT) genannt. Chun-Lin Jia und Knut Urban, Direktor am Ernst Ruska-Centrum - dem Aachener und Jülicher Kompetenzzentrum für Mikroskopie und Spektroskopie mit Elektronen - haben die Probe des PZT mit einem besonders empfindlichen und atomar auflösendenTransmissionselektronen-mikroskop untersucht. Dieses aberrationskorrigierte Gerät behebt Abbildungsfehler des Linsensystems und liefert daher scharfe und kontrastreiche Aufnahmen von sehr kleinen Details. Es ist sogar in der Lage, die Positionen von Atomen mit einer Genauigkeit von wenigen Pikometern zu bestimmen - ein Pikometer ist der tausendste Teil eines Nanometers. Mit dieser Technik lassen sich anders als mit einem herkömmlichen Transmissionselektronenmikroskop Sauerstoff-Atome des PZT lokalisieren, die ansonsten aufgrund ihres schwachen Streusignals kaum zu detektieren sind.

Indem die Forscher in der PZT-Probe nun die genauen Positionen der Sauerstoffatome einerseits sowie der Zirkonium- und Titan-Atome andererseits bestimmten, ermittelten sie die Orientierung der Dipole in jeder einzelnen von mehr als 250 Elementarzellen. Die Probe besteht aus dem Querschnitt durch eine PZT-Schicht, die etwa zwanzig Elementarzellen, also gut vierzig Atomlagen, dick ist. Das ferroelektrische Material brachte Ionela Vrejoiu vom Max-Planck-Institut für Mikrostrukturphysik sehr akkurat auf eine einkristalline Strontiumtitanat-Unterlage auf. Diese hatte sie zudem mit einer dünnen Rutheniumoxid-Zwischenlage versehen, um die Grenzfläche zwischen Unterlage und ferroelektrischem Material besser bestimmen zu können. Auch die Grenze zwischen zwei Domänen mit umgekehrter Polarisierung war in der transmissionselektronenmikroskopischen Abbildung der quergeschnittenen Probe genau zu erkennen.

Dort, wo die Domänengrenze auf die Rutheniumoxid-Zwischenlage stößt, beobachteten die Jülicher Physiker nun etwas Unerwartetes - nämlich eine weitere Domäne von nur wenigen Quadratnanometern, in der die Orientierung des Ensembles der Dipole kontinuierlich um insgesamt 180 Grad dreht - die Wissenschaftler sprechen von einer flux-closure-Domäne. "Solche Domänen kennen wir aus magnetischen Materialien, und für ferroelektrische Materialien haben einige Berechnungen sie ebenfalls vorhergesagt", sagt Knut Urban. "Aber wir haben sie erstmals direkt beobachtet."

Trotz theoretischer Vorhersagen hielten viele Physiker ringförmig angeordnete Dipole bislang für unmöglich.

"Ich habe nicht geglaubt, dass sie existieren", bekennt Marin Alexe, der die Ferroelektrika am Max-Planck-Institut in Halle erforscht. Dafür hat er auch einen guten Grund: Die Magnetisierung wird von Elektronen getragen und lässt sich mit geringem Energieaufwand in ihrer Richtung verändern. Die Umorientierung der Dipole in Ferroelektrika bedingt dagegen eine Verzerrung oder einen Umbau der Elementarzellen. Solche Veränderungen kosten wesentlich mehr Energie als eine magnetische Umorientierung, weil sie die Symmetrie des Kristalls stören. Eine Drehung um 180 Grad ist noch nachvollziehbar, aber eine schrittweise Verzerrung der Elementarzelle hielten viele Wissenschaftler schlicht für zu energieaufwendig.

"Dass wir den Ringschluss des Dipolflusses und die kontinuierliche Rotation der Dipole jetzt nachgewiesen haben, dürfte auch einen praktischen Nutzen haben", sagt Dietrich Hesse, einer der beteiligten Forscher am Max-Planck-Institut in Halle. "Offenbar findet die Natur auf diese Weise einen Weg, die Polarisierung auch in Strukturen von weniger als zehn mal zehn Nanometern aufrecht zu erhalten." Bislang gingen die Physiker davon aus, dass die Polarisierung in solchen Strukturen zusammenbricht, weil sie zu wenige Dipole enthalten.

Denn Ferroelektrizität ist ein kollektives Phänomen, die Dipole stützen sich also gewissermaßen gegenseitig. Sinkt ihre Zahl unter eine bestimmte Grenze, bringen kleinste elektrische Ladungen, die sich stets an Oberflächen bilden, die Ordnung der Dipole durcheinander. Auf diesen Effekt ist auch zurückzuführen, dass die Polarisierung an der oberen Seite der PZT-Schicht, die das Forscherteam nun untersuchte, verschwunden war. "Wir mussten also bislang davon ausgehen, dass wir die Domänen wegen der Depolarisierung nicht unter die Grenze von 20 mal 20 Nanometer verkleinern können", sagt Marin Alexe. Genau dies könnte nun doch möglich werden.

"Wir werden nun die genauen Bedingungen untersuchen, unter denen sich Strukturen mit einer ringförmigen Polarisierung bilden", so Alexe. Die Null und Eins eines Bits ließen sich dann codieren, indem die Dipole mal im Uhrzeigersinn und mal dagegen ausgerichtet werden. "Für entsprechende Untersuchungen haben wir bereits Ideen", sagt Dietrich Hesse. "Doch bis es Datenspeicher gibt, die pro Quadratzoll dauerhaft mehrere Billionen Datenpunkte speichern, und diese so schnell aufnehmen und abgeben wie ein heutiger Arbeitsspeicher, werden noch einige Jahre verstreichen."

Originalveröffentlichung:
Chun-Lin Jia, Knut W. Urban, Marin Alexe, Dietrich Hesse, Ionela Vrejoiu Direct Observation of Continuous Electric Dipole Rotation in Flux-Closure Domains in Ferroelectric Pb(Zr,Ti)O3 Science, 18. März 2011
Mehr Informationen zum ER-C:
http://www.er-c.org
Ansprechpartner:
Prof. Knut Urban
Tel.: 02461 61 3153
k.urban@fz-juelich.de
Dr. Karsten Tillmann
Tel.: 02461 61 1438
k.tillmann@fz-juelich.de
Pressekontakt:
Annette Stettien, Angela Wenzik
Tel.: 02461 61 2388, -6048
a.stettien@fz-juelich.de; a.wenzik@fz-juelich.de
Das Forschungszentrum Jülich...
... betreibt interdisziplinäre Spitzenforschung, stellt sich drängenden Fragen der Gegenwart und entwickelt gleichzeitig Schlüsseltechnologien für morgen. Hierbei konzentriert sich die Forschung auf die Bereiche Gesundheit, Energie und Umwelt sowie Informationstechnologie. Einzigartige Expertise und Infrastruktur in der Physik, den Materialwissenschaften, der Nanotechnologie und im Supercomputing prägen die Zusammenarbeit der Forscherinnen und Forscher. Mit rund 4 600 Mitarbeiterinnen und Mitarbeitern gehört Jülich, Mitglied der Helmholtz-Gemeinschaft, zu den großen Forschungszentren Europas.

Annette Stettien | FZ Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.er-c.org

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise