Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit elektrischen Feldern Magnetismus steuern

22.08.2011
„Nature Materials“: Neues multiferroisches Material entwickelt
RUB-Forscher ermöglichen hochpräzise Messung mit Röntgenstreuung

Ein internationales Forscherteam aus Frankreich und Deutschland hat ein neues Material entwickelt, das erstmals auch bei Raumtemperatur magnetisch auf elektrische Felder reagiert. Bisher war dies überhaupt nur bei sehr tiefen, nicht praktikablen Temperaturen möglich. Elektrische Felder sind technisch viel einfacher und billiger herzustellen als magnetische Felder, für die man stromfressende Spulen benötigt.

Die Forscher haben nun einen Weg gefunden, Magnetismus durch elektrische Felder schon bei „normaler“ Temperatur zu steuern, und verwirklichen damit einen Traum. Ermöglicht wurden die hochpräzisen Experimente in einer von der Ruhr-Universität Bochum gebauten Messkammer am Berliner Helmholtz-Zentrum. Über ihre Ergebnisse berichtet die Forschergruppe aus Paris und Berlin unter Beteiligung von Wissenschaftlern der RUB in „Nature Materials“.

ALICE im Wunderland

Die „multiferroische“ Eigenschaft des neuen Materials nachzuweisen, gelang in der Messkammer ALICE – so benannt, weil sie wie „Alice im Wunderland“ hinter die Dinge schauen kann. Dabei wird ein bestimmter Bereich von Röntgenstrahlung genutzt, um magnetische Nanostrukturen zu untersuchen. Die von Bochumer Physikern entwickelte Messkammer, gefördert vom Bundesministerium für Bildung und Forschung, ist seit 2007 erfolgreich im Einsatz am Elektronenspeicherring BESSY II in Berlin. Mit den jetzt entdeckten Materialeigenschaften von BaTiO3 (Bismuth-Titan-Oxid) lassen sich zukünftig Bauelemente wie Datenspeicher und logische Schalter entwerfen, die mit elektrischen anstatt mit magnetischen Feldern kontrollierbar sind.

Ferromagnetische und ferroelektrische Eigenschaften

Ferromagnetische Materialien wie Eisen können durch magnetische Felder beeinflusst werden. Im Magnetfeld sind alle atomaren magnetischen Dipole ausgerichtet. In ferroelektrischen Materialien ersetzen elektrische Dipole – das sind zwei getrennte und entgegengesetzte Ladungen – die magnetischen Dipole, so dass man sie in einem elektrischen Feld ausrichten kann. In ganz seltenen Fällen reagieren so genannte multiferroische Materialien auf beide Felder – magnetische und elektrische.

Multiferroisch bei Raumtemperatur

Ein solch multiferroisches Material stellten die Forscher her, indem sie ultradünne ferromagnetische Eisenschichten auf ferroelektrische Bismuth-Titan-Oxid-Schichten aufdampften. Dabei konnten sie feststellen, dass das sonst nicht magnetische ferroelektrische Material an der Grenzfläche zwischen den beiden Schichten ferromagnetisch wird. Damit haben die Forscher das weltweit erste multiferroische Material entwickelt, das bereits bei Raumtemperatur sowohl auf magnetische wie auf elektrische Felder reagiert.

Magnetische Röntgenstreuung wirft Licht auf neuen Steuermechanismus

Diesen Grenzflächenmagnetismus wiesen die Wissenschaftler mit Hilfe der spektroskopischen Methode „magnetischer Röntgendichroismus“ nach. Dabei wird die Polarisation der Röntgenstrahlen durch Magnetismus beeinflusst – ähnlich dem bekannten „Faraday-Effekt“ aus der Optik. Der magnetische Röntgendichroismus hat den Vorteil, dass er auf jedes einzelne Element in dem untersuchten Material angewandt werden kann. Mit dieser Methode konnte das Forscherteam zeigen, dass alle drei Elemente in dem ferroelektrischen Material – Bismuth, Sauerstoff und Titan – an der Grenzfläche zu Eisen ferromagnetisch reagieren, obwohl diese Atome sonst nicht magnetisch sind.

Eine äußerst raffinierte Methode

„Die Methode des magnetischen Röntgendichroismus ist hoch komplex“, sagt Prof. Dr. Hartmut Zabel, Lehrstuhl für Experimentalphysik der RUB. Die Messkammer ALICE vereinigt Röntgenstreuung mit Röntgen-Spektroskopie. „Das ist eine äußerst raffinierte und sehr empfindliche Methode“, so Prof. Zabel. „Die hohe Präzision der Detektoren sowie aller Goniometer in der Kammer führte zum Erfolg der Experimente des internationalen Messteams.“

Titelaufnahme

S. Valencia et al.: “Interface-induced room-temperature multiferroicity in BaTiO3”. Nature Materials, DOI: 10.1038/NMAT3098

Weitere Informationen

Prof. Dr. Hartmut Zabel, Lehrstuhl für Experimentalphysik / Festkörperphysik der Ruhr-Universität Bochum, Tel. 0234/32-23649, E-Mail hartmut.zabel@rub.de

Redaktion: Jens Wylkop

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Klein bestimmt über groß?
29.03.2017 | Max-Planck-Institut für Dynamik und Selbstorganisation

nachricht Quantenkommunikation: Wie man das Rauschen überlistet
29.03.2017 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten