Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Kontaktierung eines Bits der Quantenwelt

28.10.2010
Wie die Zeitschrift "Nature" in der Ausgabe vom 28.10.2010 berichtet, zeigt die Hamburger Forschergruppe von Prof. Wiesendanger erstmals, dass im Labor einzelne Quantenbits in einem Halbleiter nun auch elektrisch adressiert werden können. Dies ist ein weiterer wichtiger Schritt auf dem Weg zum Zeitalter der Quanten-Informationstechnologie.

Sämtliche digitalen Geräte unseres derzeitigen Informationszeitalters basieren auf Rechenoperationen, die von Mikroprozessoren durchgeführt werden. Damit die Prozessoren rechnen können, werden in ihm die Zahlen in Ansammlungen so genannter Bits gespeichert und weiterverarbeitet.


(a) Rastertunnelmikroskopische Abbildung von fünf Quantenbits (Eisenatome, blau), die in die Oberfläche von Indiumantimonid (gelb) dotiert sind. (b) Schematische Darstellung des Adressierens, bei dem mittels eines magnetischen Lesekopfes (Spitze) der Spin der an das Eisenatom gebundenen Elektronen (Pfeile) ausgelesen werden kann. © 2010 Jens Wiebe, SPM-Gruppe von Prof. Roland Wiesendanger, Universität Hamburg

Das Bit, ein Zustand der entweder "1" oder "0" sein kann, ist also der Grundbaustein der Informationstechnologie. Heutzutage sind die Prozessoren im Wesentlichen aus Unmengen kleinster Transistoren aufgebaut, die auf Silizium-Wafern aufgebracht sind. In diesen Transistoren wird ein Bit durch Aufladung mit Elektronen gespeichert: ist der Transistor mit Elektronen geladen, entspricht dies der "1", ist er ungeladen, entspricht dies der "0".

Die stetig zunehmende Miniaturisierung üblicher digitaler Geräte der Unterhaltungsindustrie erfordert immer kleinere und schnellere Prozessoren, welche die Flut der Daten auf kleinstem Raum in Sekundenbruchteilen verarbeiten kann. Daher gab es in den letzten Jahrzehnten einen exponentiellen Anstieg der realisierbaren Dichte der Transistoren. Diese Entwicklung wird jedoch in wenigen Jahren an ihre Grenzen stoßen, wenn nämlich die Transistoren so klein werden, dass sie nur noch aus wenigen hundert Siliziumatomen bestehen.

Um die wirtschaftliche Entwicklung aufrechtzuerhalten, ist daher ein Paradigmenwechsel vonnöten. Die Idee ist, in Transistoren oder ähnlichen Bauteilen nicht mehr die elektrische Ladung der Elektronen auszunutzen, sondern deren zweite Eigenschaft, die mit der Funktion einer Kompassnadel vergleichbar ist: Die Elektronen rotieren um ihre eigene Achse, sowohl links als auch rechts herum. Dabei erzeugen sie ein magnetisches Moment, welches nach unten oder oben zeigen kann. In der Ausrichtung dieses "Spins" könnte man also bereits in einem einzelnen Elektron die Information speichern, die einem Bit entspricht.

Aufgrund der kleinen räumlichen Ausdehnung des Elektrons, welches in Silizium z.B. an ein einzelnes Dotieratom gebunden sein könnte, wäre prinzipiell eine immens hohe Dichte der Bits realisierbar. Da das Wechseln des Zustands eines solchen Bits von "0" in "1" keinen Ladungstransport erfordert -das Elektron bleibt ja auf seinem Platz-, wäre die Verarbeitung dieser Bits in Prozessoren zudem durch einen deutlich geringeren Energieverbrauch begleitet.

Solche Bits gehorchen nicht mehr den mechanischen Gesetzen der uns vertrauten makroskopischen Welt, sondern obliegen der Quantenmechanik und werden daher auch "Quantenbit" genannt. Dies hat z.B. zur Konsequenz, dass das Quantenbit nicht mehr nur im Zustand "1" oder "0" sein kann, sondern in einer Mischung aus beiden Zuständen. Dadurch kann das Quantenbit also von sich aus schon mehr Information speichern als ein herkömmliches Ladungs-Bit. Ferner erlaubt dies prinzipiell auch Operationen durchzuführen, die sich genau diese Mischzustände zunutze machen, um wesentlich schneller und effizienter zu rechnen.

Um die Vision dieses "Quantencomputers" wahr werden zu lassen, sind jedoch verschiedenste Probleme zu lösen, wie z.B. das des elektrischen Auslesens des Zustands einzelner Quantenbits. Genau dieses Problem wurde von dem Hamburger Forscherteam nun geknackt.

Das Team um Dr. Jens Wiebe und Prof. Roland Wiesendanger vom Institut für Angewandte Physik untersuchte einen Indiumantimonid-Wafer, in dessen Oberfläche einzelne Eisenatome dotiert wurden (siehe Abbildung). Mit einem atomar feinen magnetischen Lesekopf war es ihnen möglich die Oberfläche abzutasten, und jedes einzelne Eisenatom zu adressieren. Wie die Untersuchung ergab, bilden die Elektronen, die an eins dieser Eisenatome gebunden sind, ein Quantenbit mit sogar drei möglichen Einstellungen ("1", "0", und "-1").

Mit dem Lesekopf war es nicht nur möglich auszulesen, in welchem seiner drei Zustände sich das Quantenbit bevorzugt aufhielt. Zudem konnte sein Zustand auch manipuliert werden, d.h. es war gewissermaßen möglich es mit Information zu "beschreiben".

Das Auslesen und Schreiben in Halbleiter dotierter Quantenbits war bisher nur unter sehr speziellen Bedingungen mit optischen Methoden möglich. Diese Methoden sind räumlich nicht präzise genug, um einzelne Quantenbits, die dicht gepackt sind, voneinander zu trennen. Mit dem von dem Hamburger Forscherteam entwickelten atomar präzisen Verfahren wird es dagegen jetzt möglich, Kopplungen zwischen benachbarten Quantenbits zu untersuchen. Diese Kopplungen sind letztendlich für die Funktion der zukünftigen Quantencomputer von entscheidender Bedeutung.

Originale Veröffentlichung:
A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger, "Detecting excitation and magnetization of individual dopants in a semiconductor", Nature 467, 1084–1087 (2010)

DOI: 10.1038/nature09519

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de
http://www.nanoscience.de/lexi

Weitere Berichte zu: Bit Eisenatom Elektron Halbleiter Kopplungen Prozessor Quantenbit Quantenwelt Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie