Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrische Kontaktierung eines Bits der Quantenwelt

28.10.2010
Wie die Zeitschrift "Nature" in der Ausgabe vom 28.10.2010 berichtet, zeigt die Hamburger Forschergruppe von Prof. Wiesendanger erstmals, dass im Labor einzelne Quantenbits in einem Halbleiter nun auch elektrisch adressiert werden können. Dies ist ein weiterer wichtiger Schritt auf dem Weg zum Zeitalter der Quanten-Informationstechnologie.

Sämtliche digitalen Geräte unseres derzeitigen Informationszeitalters basieren auf Rechenoperationen, die von Mikroprozessoren durchgeführt werden. Damit die Prozessoren rechnen können, werden in ihm die Zahlen in Ansammlungen so genannter Bits gespeichert und weiterverarbeitet.


(a) Rastertunnelmikroskopische Abbildung von fünf Quantenbits (Eisenatome, blau), die in die Oberfläche von Indiumantimonid (gelb) dotiert sind. (b) Schematische Darstellung des Adressierens, bei dem mittels eines magnetischen Lesekopfes (Spitze) der Spin der an das Eisenatom gebundenen Elektronen (Pfeile) ausgelesen werden kann. © 2010 Jens Wiebe, SPM-Gruppe von Prof. Roland Wiesendanger, Universität Hamburg

Das Bit, ein Zustand der entweder "1" oder "0" sein kann, ist also der Grundbaustein der Informationstechnologie. Heutzutage sind die Prozessoren im Wesentlichen aus Unmengen kleinster Transistoren aufgebaut, die auf Silizium-Wafern aufgebracht sind. In diesen Transistoren wird ein Bit durch Aufladung mit Elektronen gespeichert: ist der Transistor mit Elektronen geladen, entspricht dies der "1", ist er ungeladen, entspricht dies der "0".

Die stetig zunehmende Miniaturisierung üblicher digitaler Geräte der Unterhaltungsindustrie erfordert immer kleinere und schnellere Prozessoren, welche die Flut der Daten auf kleinstem Raum in Sekundenbruchteilen verarbeiten kann. Daher gab es in den letzten Jahrzehnten einen exponentiellen Anstieg der realisierbaren Dichte der Transistoren. Diese Entwicklung wird jedoch in wenigen Jahren an ihre Grenzen stoßen, wenn nämlich die Transistoren so klein werden, dass sie nur noch aus wenigen hundert Siliziumatomen bestehen.

Um die wirtschaftliche Entwicklung aufrechtzuerhalten, ist daher ein Paradigmenwechsel vonnöten. Die Idee ist, in Transistoren oder ähnlichen Bauteilen nicht mehr die elektrische Ladung der Elektronen auszunutzen, sondern deren zweite Eigenschaft, die mit der Funktion einer Kompassnadel vergleichbar ist: Die Elektronen rotieren um ihre eigene Achse, sowohl links als auch rechts herum. Dabei erzeugen sie ein magnetisches Moment, welches nach unten oder oben zeigen kann. In der Ausrichtung dieses "Spins" könnte man also bereits in einem einzelnen Elektron die Information speichern, die einem Bit entspricht.

Aufgrund der kleinen räumlichen Ausdehnung des Elektrons, welches in Silizium z.B. an ein einzelnes Dotieratom gebunden sein könnte, wäre prinzipiell eine immens hohe Dichte der Bits realisierbar. Da das Wechseln des Zustands eines solchen Bits von "0" in "1" keinen Ladungstransport erfordert -das Elektron bleibt ja auf seinem Platz-, wäre die Verarbeitung dieser Bits in Prozessoren zudem durch einen deutlich geringeren Energieverbrauch begleitet.

Solche Bits gehorchen nicht mehr den mechanischen Gesetzen der uns vertrauten makroskopischen Welt, sondern obliegen der Quantenmechanik und werden daher auch "Quantenbit" genannt. Dies hat z.B. zur Konsequenz, dass das Quantenbit nicht mehr nur im Zustand "1" oder "0" sein kann, sondern in einer Mischung aus beiden Zuständen. Dadurch kann das Quantenbit also von sich aus schon mehr Information speichern als ein herkömmliches Ladungs-Bit. Ferner erlaubt dies prinzipiell auch Operationen durchzuführen, die sich genau diese Mischzustände zunutze machen, um wesentlich schneller und effizienter zu rechnen.

Um die Vision dieses "Quantencomputers" wahr werden zu lassen, sind jedoch verschiedenste Probleme zu lösen, wie z.B. das des elektrischen Auslesens des Zustands einzelner Quantenbits. Genau dieses Problem wurde von dem Hamburger Forscherteam nun geknackt.

Das Team um Dr. Jens Wiebe und Prof. Roland Wiesendanger vom Institut für Angewandte Physik untersuchte einen Indiumantimonid-Wafer, in dessen Oberfläche einzelne Eisenatome dotiert wurden (siehe Abbildung). Mit einem atomar feinen magnetischen Lesekopf war es ihnen möglich die Oberfläche abzutasten, und jedes einzelne Eisenatom zu adressieren. Wie die Untersuchung ergab, bilden die Elektronen, die an eins dieser Eisenatome gebunden sind, ein Quantenbit mit sogar drei möglichen Einstellungen ("1", "0", und "-1").

Mit dem Lesekopf war es nicht nur möglich auszulesen, in welchem seiner drei Zustände sich das Quantenbit bevorzugt aufhielt. Zudem konnte sein Zustand auch manipuliert werden, d.h. es war gewissermaßen möglich es mit Information zu "beschreiben".

Das Auslesen und Schreiben in Halbleiter dotierter Quantenbits war bisher nur unter sehr speziellen Bedingungen mit optischen Methoden möglich. Diese Methoden sind räumlich nicht präzise genug, um einzelne Quantenbits, die dicht gepackt sind, voneinander zu trennen. Mit dem von dem Hamburger Forscherteam entwickelten atomar präzisen Verfahren wird es dagegen jetzt möglich, Kopplungen zwischen benachbarten Quantenbits zu untersuchen. Diese Kopplungen sind letztendlich für die Funktion der zukünftigen Quantencomputer von entscheidender Bedeutung.

Originale Veröffentlichung:
A. A. Khajetoorians, B. Chilian, J. Wiebe, S. Schuwalow, F. Lechermann, and R. Wiesendanger, "Detecting excitation and magnetization of individual dopants in a semiconductor", Nature 467, 1084–1087 (2010)

DOI: 10.1038/nature09519

Heiko Fuchs | idw
Weitere Informationen:
http://www.sfb668.de
http://www.nanoscience.de
http://www.nanoscience.de/lexi

Weitere Berichte zu: Bit Eisenatom Elektron Halbleiter Kopplungen Prozessor Quantenbit Quantenwelt Transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mehr Wissen über Proteine: Forscher aus Halle verbessern Massenspektrometrie-Verfahren

23.10.2017 | Biowissenschaften Chemie

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungsnachrichten

Stickoxide: Neuartiger Katalysator soll Abgase ohne Zusätze reinigen

23.10.2017 | Materialwissenschaften