Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrisch steuerbare Quantenbits realisiert

02.09.2013
Mehr ist manchmal weniger Aufwand, zumindest in der Quantenwelt. Ein internationales Forscherteam hat erstmals ein Quantenbit – die Informationseinheit von Quantencomputern – hergestellt und gesteuert, das aus drei sogenannten Quantenpunkten besteht.

Der Versuch belegt, dass sich solche Triplett-Quantenbits einfacher kontrollieren lassen als Quantenbits aus einem einzelnen oder zwei Quantenpunkten. Dies hatte der beteiligte Jülicher Physiker Prof. David P. DiVincenzo bereits im Jahr 2000 vorhergesagt. Die Ergebnisse wurden gestern in der Fachzeitschrift „Nature Nanotechnology“ veröffentlicht (DOI: 10.1038/nnano.2013.168).


Lithografisch strukturierte Galliumarsenidschicht mit einem elektrisch steuerbaren Qubit. Drei Quantenpunkte, durch kleine rote Kreise markiert, bilden das Qubit, das sich über Kontakte (unten im Bild) elektrisch steuern lässt. Der große rote Kreis gibt die Lage des Sensors an, der das Qubit auslesen kann. Quelle: Forschungszentrum Jülich/Nature Nanotechnology

Quantencomputer sollen einmal Rechnungen lösen, mit denen heutige Computer viele Jahre beschäftigt oder völlig überfordert wären. Möglich ist dies durch die besonderen Eigenschaften der Quantenwelt. Während herkömmliche Computer mit Bits, den Informationseinheiten „Null“ und „Eins“, rechnen, verarbeiten Quantenrechner Quantenbits, kurz Qubits. Qubits können die Zustände „Null“ und „Eins“ gleichzeitig annehmen und dadurch Aufgaben parallel lösen.

Um Qubits zu realisieren, gibt es viele Ideen. Als besonders vielversprechend gelten Quantenpunkte in Halbleitern, die bereits lange in Rechnern verwendet werden. Quantenpunkte sind winzige scheibenförmige Strukturen im Nanometer-Bereich. Ihre Ausdehnung ist so gering, dass die Elektronen nicht mehr frei beweglich sind und quantenmechanischen Regeln gehorchen. Der Drehimpuls der „eingesperrten“ Elektronen dient als Informationsträger. Denn der „Spin“, der den Elektronen ihr magnetisches Moment verleiht, kommt in zwei Varianten vor: „up“ und „down“ oder „Null“ und „Eins“.

Die Drehrichtung kodiert also die Information. Um sie festzulegen, nutzen bisherige Konzepte elektrische oder magnetische Felder. Dieses Verfahren benötigt viel Platz und ist ungenau: Weil jeder der Quantenpunkte physikalisch wie ein Ei dem anderen gleicht, passiert es leicht, dass die Felder ungewollt auch benachbarte Quantenpunkte beeinflussen.

Deshalb hatte Prof. David DiVincenzo, Direktor am Forschungszentrum Jülich und Institutsleiter an der RWTH Aachen, bereits im Jahr 2000 vorgeschlagen, Qubits aus drei Quantenpunkten zu konstruieren. Mit einem Elektronenspin pro Quantenpunkt lassen sich in einem solchen Qubit theoretisch acht unterscheidbare Zustände erzeugen.

Dass dies auch praktisch funktioniert, hat jetzt ein Team von Forschern aus Europa und den USA nachgewiesen, an dem auch der theoretische Physiker DiVincenzo beteiligt war. Es gelang ihnen, die Position und Orientierung der Spins in drei Quantenpunkten allein durch elektrische Spannung gezielt und schnell zu steuern und auszulesen. Die notwendigen stromführenden Strukturen auf einer Halbleiteroberfläche von gut einem Quadratmikrometer Fläche erzeugten sie per Lithografie, einem erprobten, gut miniaturisierbaren Verfahren. Externe elektrische oder Magnetfelder benötigten sie nicht.

Mit Kolleginnen und Kollegen am Forschungszentrum sowie an der RWTH Aachen erforscht DiVincenzo unter dem Dach der Jülich Aachen Research Alliance JARA verschiedene Konzepte und Materialien für die Realisierung des Quantencomputing. Quantenbits in Halbleitermaterialien bilden einen Forschungsschwerpunkt.

Originalveröffentlichung:
Self-Consistent Measurement and State Tomography of an Exchange-Only Spin Qubit;
J. Medford et al.;
Nature Nanotechnology 2013, published online 01.09.2013,
DOI: 10.1038/nnano.2013.168
Article: http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2013.168.html
Weitere Informationen:
Institutsbereich „Theoretische Nanoelektronik (PGI-2 / IAS-3):
http://www.fz-juelich.de/pgi/pgi-2/
Institut für Quanteninformation:
http://www.physik.rwth-aachen.de/institute/institut-fuer-quanteninformation/
Jülich Aachen research Alliance – Fundamentals of Future Information Technology:

http://www.jara.org/de/research/jara-fit/

Ansprechpartner:
Prof. David DiVincenzo
Theoretische Nanoelektronik (PGI-2 / IAS-3),
Forschungszentrum Jülich
Tel. 02461 61-9069
d.divincenzo@fz-juelich.de
Pressekontakt:
Angela Wenzik
Wissenschaftsjournalistin, Forschungszentrum Jülich
Tel. 02461 61-6048
a.wenzik@fz-juelich.de

Annette Stettien | Forschungszentrum Jülich
Weitere Informationen:
http://www.fz-juelich.de
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2013/13-09-02Triplett-Qubits.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht ALMA beginnt Beobachtung der Sonne
18.01.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Magnetische Kraft von einzelnen Antiprotonen mit höchster Genauigkeit bestimmt
18.01.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Textiler Hochwasserschutz erhöht Sicherheit

Wissenschaftler der TU Chemnitz präsentieren im Februar und März 2017 ein neues temporäres System zum Schutz gegen Hochwasser auf Baumessen in Chemnitz und Dresden

Auch die jüngsten Hochwasserereignisse zeigen, dass vielerorts das natürliche Rückhaltepotential von Uferbereichen schnell erschöpft ist und angrenzende...

Im Focus: Wie Darmbakterien krank machen

HZI-Forscher entschlüsseln Infektionsmechanismen von Yersinien und Immunantworten des Wirts

Yersinien verursachen schwere Darminfektionen. Um ihre Infektionsmechanismen besser zu verstehen, werden Studien mit dem Modellorganismus Yersinia...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Künftige Rohstoffexperten aus aller Welt in Freiberg zur Winterschule

18.01.2017 | Veranstaltungen

Bundesweiter Astronomietag am 25. März 2017

17.01.2017 | Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

ALMA beginnt Beobachtung der Sonne

18.01.2017 | Physik Astronomie

Textiler Hochwasserschutz erhöht Sicherheit

18.01.2017 | Architektur Bauwesen

Neues Forschungsspecial zu Meeren, Ozeanen und Gewässern

18.01.2017 | Geowissenschaften