Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiskristalle unter Kontrolle

18.05.2015

Was passiert eigentlich, wenn sich Eiskristalle bilden? Auch wenn dieses Phänomen alltäglich scheint und eine große Bedeutung für verschiedene Anwendungen hat, sind doch diese Vorgänge auf molekularer Ebene weitgehend unverstanden. Physiker der Heinrich-Heine-Universität Düsseldorf haben sich dieses Themas angenommen und veröffentlichen ihre Ergebnisse nun in der Zeitschrift Nature Communications.

Eis am Stiel ist erfrischend und Eisblumen an Fensterscheiben sind ästhetisch. Dieselben Eiskristalle ärgern aber den Autofahrer, der bei Minusgraden zum Eiskratzer greifen muss. Bei Flugzeugen ist es nicht anders, Eis auf Tragflächen beeinträchtigt die Flugfähigkeit. Darum müssen vereiste Tragflächen aufwendig und teuer enteist werden.


Ein keimender Kolloidkristall an einer Grenzfläche.

HHU / Institut für Theoretische Physik II

Physikalisch bedeutet dies: Wenn es kalt wird, gefriert eine Flüssigkeit zu einem Kristall. Dies passiert besonders häufig an Grenzflächen, die die Rolle von Kristallkeimen spielen. Wie diese sogenannte heterogene Kristallisation an der Grenzfläche auf der Ebene der einzelnen Moleküle genau erfolgt, ist alles andere als klar und Gegenstand aktueller Forschung.

Theoretische und Experimentalphysiker der Heinrich-Heine-Universität Düsseldorf haben gemeinsam ein solches Kristallisationsereignis an einem Keim nachgestellt. Sie haben dazu die Bewegung von mikrometergroßen Plastikkügelchen als Modell für einzelne Kolloidteilchen unter einem modernen konfokalen Mikroskop beobachteten. Prof. Dr. Stefan Egelhaaf vom Institut für Experimentelle Physik der kondensierten Materie erläutert: „Wir spüren jedes einzelne Teilchen und damit den ganzen Kristall auf und verfolgen ihn mit hoher Präzision.“

In der Tat bildet sich an einem Keim ein Kriställchen aus, welches dann weiter wächst. Was dann aber passiert, ist verblüffend: Der Kristall löst sich nach diesem Start vom Keim, entspannt sich durch Umordnung, um danach wieder unverspannt zum Keim zurückzukehren. Die Wissenschaftler können dieses Experiment theoretisch und mit Hilfe eines Modells komplett erklären.

Damit zeigen sie auch, dass dieses neue Phänomen überall vorkommt, auch bei Eis am Flugzeugflügel und bei Speiseeis am Stiel. „So gut wie immer passt die Grenzfläche nicht haargenau mit der Gittersymmetrie eines unverspannten Kristalls zusammen, sodass sich unser Szenario zwangsläufig ergibt“, erklärt Prof. Dr. Hartmut Löwen vom Institut für Theoretische Physik II.

Die Wissenschaftler erhoffen sich aus diesen Ergebnissen, die Kristallkeimung an Grenzflächen langfristig besser steuern und kontrollieren zu können.

Originalpublikation
E. Allahyarov, K. Sandomirski, S. U. Egelhaaf, H. Löwen, Crystallization seeds favour crystallization only during initial growth, Nature Communications 6:7110
Online: DOI: 10.1038/ncomms8110

Kontakt
Prof. Dr. Hartmut Löwen
Institut für Theoretische Physik II
Tel.: +49 (0)211 81 11377
E-Mail: hlowen@thphy.uni-duesseldorf.de

Prof. Dr. Stefan Egelhaaf
Institut für Experimentelle Physik der kondensierten Materie
Tel.: +49 (0)211 81 14325
E-Mail: stefan.egelhaaf@hhu.de

Dr.rer.nat. Arne Claussen | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Biophysik - Blitzlicht aus der Nanowelt
24.04.2018 | Ludwig-Maximilians-Universität München

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuer Impfstoff-Kandidat gegen Malaria erfolgreich in erster klinischer Studie untersucht

25.04.2018 | Biowissenschaften Chemie

Erkheimer Ökohaus-Pionier eröffnet neues Musterhaus „Heimat 4.0“

25.04.2018 | Architektur Bauwesen

Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

25.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics