Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor

19.12.2008
Weltweit einmalige Bedingungen zur Herstellung und Speicherung ultrakalter Neutronen am Mainzer Forschungsreaktor

Wissenschaftler am Forschungsreaktor TRIGA der Johannes Gutenberg-Universität Mainz haben erstmals die Geschwindigkeitsverteilung von ultrakalten Neutronen (UCN) nach Austritt aus einem Deuterium-Eiskristall bestimmt.

"Damit sind wir ein gutes Stück vorangekommen, um künftig am Mainzer Forschungsreaktor große Mengen ultrakalter Neutronen zu speichern und sie genauer zu untersuchen", erklärt Prof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie. Künftige Experimente sollen dabei helfen, mehr über das Neutron und seine Eigenschaften zu erfahren und dadurch einen Einblick in die Prozesse direkt nach dem Urknall und im frühen Universum zu erhalten. Die Erzeugung von ultrakalten Neutronen ist den Mainzern im Februar 2006 in enger Zusammenarbeit mit dem Physik Department der TU München erstmals gelungen. Seitdem wird dieser Bereich kontinuierlich ausgebaut.

Ausgangspunkt der Arbeiten ist der TRIGA-Reaktor: Normalerweise sind Neutronen zusammen mit Protonen im Atomkern gebunden. Während eines Pulses von 30 Millisekunden Dauer entstehen im Reaktor freie Neutronen, also nicht mehr gebundene Teilchen, mit einer mittleren thermischen Geschwindigkeit von 2.200 Metern pro Sekunde. In unmittelbarer Nähe des Reaktorkerns treffen sie auf einen Eisblock, der aus dem Wasserstoffisotop Deuterium besteht.

Die freien Neutronen übertragen bei dem Aufprall ihre gesamte Energie auf den Deuteriumkristall und werden dadurch auf Geschwindigkeiten um 5 Meter pro Sekunde abgebremst - man spricht nun von "ultrakalten Neutronen". Die ultrakalten Neutronen werden in einem drei Meter langen Extraktionsrohr, das sich an den Eiskristall anschließt, totalreflektiert und nicht wie normale Neutronen absorbiert. "Diese ultrakalten Neutronen verhalten sich wie ein Gas, wir können sie am Ende des Rohres speichern, zählen und beobachten", sagt Plonka-Spehr. Der Physiker hat eine Juniorprofessur inne, die die Carl-Zeiss-Stiftung Anfang des Jahres 2008 speziell zu diesem Thema am Institut für Kernchemie eingerichtet hat.

Anerkennung in der Fachpresse fanden insbesondere die Arbeiten zur Geschwindigkeitsverteilung der ultrakalten Neutronen nach ihrem Austritt aus dem Deuteriumkristall. "Mit diesen Ergebnissen können wir unsere Experimente optimal an die UCN-Quelle anpassen", so Plonka-Spehr. Eine weitere Verbesserung wird ein neu installierter Helium-Tank bringen, der in den vergangenen Tagen eingerichtet wurde und 1500 Liter flüssiges Helium bei einer Temperatur von etwa minus 270 Grad Celsius speichert. "Der Tank ist wie eine riesige Thermoskanne, aus der wir über Tage und Wochen flüssiges Helium entnehmen können, um den Deuteriumkristall an der Strahlrohrnase zu kühlen." Damit ist die Arbeitsgruppe künftig in der Lage, auch Langzeitexperimente mit ultrakalten Neutronen durchzuführen.

Solche Langzeitexperimente, die dann über mehrere Wochen laufen, sind zum Beispiel für die Bestimmung der Lebensdauer des Neutrons wichtig. Das Neutron hat eine Halbwertszeit von etwa 15 Minuten, wonach es zerfällt. Die Neutronenlebensdauer hat eine wichtige Rolle bei der Entstehung der ersten Elemente unmittelbar nach dem Urknall gespielt und hat einen entscheidenden Einfluss darauf, wie häufig die leichtesten Elemente im Universum vorkommen. "Die Experimente zur Neutronenlebensdauer liefern zurzeit widersprüchliche Daten. Da möchten wir jetzt in Mainz mit den Messungen an unserer UCN-Quelle gerne mehr Klarheit erhalten." In Zusammenarbeit mit einem Team russischer Wissenschaftler werden Plonka-Spehr und Univ.-Prof. Dr. Werner Heil vom Institut für Physik ab 2009 an der UCN-Forschungseinrichtung des Mainzer Reaktors ein Lebensdauerexperiment einrichten.

Ab 2009 wird am Reaktor auch ein zweiter Strahlrohrplatz für UCN-Experimente zur Verfügung stehen, was noch mehr Möglichkeiten für neue Versuche schafft und eine viel größere Flexibilität ermöglicht. Dies wird einer Kooperation der Mainzer Physiker mit dem Paul Scherrer Institut im schweizerischen Villigen zugute kommen. Dort wollen die Wissenschaftler in einem hochempfindlichen Experiment herausfinden, ob das Neutron im Innern über eine Ladungsverteilung verfügt, welche erklären könnte, weshalb wir heute nur Materie im Universum finden und nicht auch Antimaterie, die unmittelbar nach dem Urknall noch existiert hat.

Die hohe UCN-Dichte, die jetzt schon am Mainzer Forschungsreaktor erzeugt werden kann, wird durch die verschiedenen Neuerungen in den nächsten Jahren weiter gesteigert. "Die Kombination eines pulsbaren Reaktors mit der UCN-Herstellung in einem festen Deuteriumkristall bei Temperaturen um minus 270 Grad Celsius ist zusammen mit der Möglichkeit, die UCN-Speicherflaschen in Minutenabständen zu befüllen, weltweit einmalig und verschafft uns die hohe UCN-Dichte, die in einer derartigen Anordnung sonst zurzeit nirgends erreicht wird", führt Plonka-Spehr aus.

Originalveröffentlichung:
Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source, I. Altarev et al., The European Physical Journal A 37, 9-14 (2008)

DOI: 10.1140/epja/i2008-10604-8

Kontakt und Informationen:
Juniorprofessor Dr. Christian Plonka-Spehr
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25314
Fax 06131 39-25253
E-Mail: plonka@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://epja.edpsciences.org/
http://www.uni-mainz.de/presse/20829.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften