Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor

19.12.2008
Weltweit einmalige Bedingungen zur Herstellung und Speicherung ultrakalter Neutronen am Mainzer Forschungsreaktor

Wissenschaftler am Forschungsreaktor TRIGA der Johannes Gutenberg-Universität Mainz haben erstmals die Geschwindigkeitsverteilung von ultrakalten Neutronen (UCN) nach Austritt aus einem Deuterium-Eiskristall bestimmt.

"Damit sind wir ein gutes Stück vorangekommen, um künftig am Mainzer Forschungsreaktor große Mengen ultrakalter Neutronen zu speichern und sie genauer zu untersuchen", erklärt Prof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie. Künftige Experimente sollen dabei helfen, mehr über das Neutron und seine Eigenschaften zu erfahren und dadurch einen Einblick in die Prozesse direkt nach dem Urknall und im frühen Universum zu erhalten. Die Erzeugung von ultrakalten Neutronen ist den Mainzern im Februar 2006 in enger Zusammenarbeit mit dem Physik Department der TU München erstmals gelungen. Seitdem wird dieser Bereich kontinuierlich ausgebaut.

Ausgangspunkt der Arbeiten ist der TRIGA-Reaktor: Normalerweise sind Neutronen zusammen mit Protonen im Atomkern gebunden. Während eines Pulses von 30 Millisekunden Dauer entstehen im Reaktor freie Neutronen, also nicht mehr gebundene Teilchen, mit einer mittleren thermischen Geschwindigkeit von 2.200 Metern pro Sekunde. In unmittelbarer Nähe des Reaktorkerns treffen sie auf einen Eisblock, der aus dem Wasserstoffisotop Deuterium besteht.

Die freien Neutronen übertragen bei dem Aufprall ihre gesamte Energie auf den Deuteriumkristall und werden dadurch auf Geschwindigkeiten um 5 Meter pro Sekunde abgebremst - man spricht nun von "ultrakalten Neutronen". Die ultrakalten Neutronen werden in einem drei Meter langen Extraktionsrohr, das sich an den Eiskristall anschließt, totalreflektiert und nicht wie normale Neutronen absorbiert. "Diese ultrakalten Neutronen verhalten sich wie ein Gas, wir können sie am Ende des Rohres speichern, zählen und beobachten", sagt Plonka-Spehr. Der Physiker hat eine Juniorprofessur inne, die die Carl-Zeiss-Stiftung Anfang des Jahres 2008 speziell zu diesem Thema am Institut für Kernchemie eingerichtet hat.

Anerkennung in der Fachpresse fanden insbesondere die Arbeiten zur Geschwindigkeitsverteilung der ultrakalten Neutronen nach ihrem Austritt aus dem Deuteriumkristall. "Mit diesen Ergebnissen können wir unsere Experimente optimal an die UCN-Quelle anpassen", so Plonka-Spehr. Eine weitere Verbesserung wird ein neu installierter Helium-Tank bringen, der in den vergangenen Tagen eingerichtet wurde und 1500 Liter flüssiges Helium bei einer Temperatur von etwa minus 270 Grad Celsius speichert. "Der Tank ist wie eine riesige Thermoskanne, aus der wir über Tage und Wochen flüssiges Helium entnehmen können, um den Deuteriumkristall an der Strahlrohrnase zu kühlen." Damit ist die Arbeitsgruppe künftig in der Lage, auch Langzeitexperimente mit ultrakalten Neutronen durchzuführen.

Solche Langzeitexperimente, die dann über mehrere Wochen laufen, sind zum Beispiel für die Bestimmung der Lebensdauer des Neutrons wichtig. Das Neutron hat eine Halbwertszeit von etwa 15 Minuten, wonach es zerfällt. Die Neutronenlebensdauer hat eine wichtige Rolle bei der Entstehung der ersten Elemente unmittelbar nach dem Urknall gespielt und hat einen entscheidenden Einfluss darauf, wie häufig die leichtesten Elemente im Universum vorkommen. "Die Experimente zur Neutronenlebensdauer liefern zurzeit widersprüchliche Daten. Da möchten wir jetzt in Mainz mit den Messungen an unserer UCN-Quelle gerne mehr Klarheit erhalten." In Zusammenarbeit mit einem Team russischer Wissenschaftler werden Plonka-Spehr und Univ.-Prof. Dr. Werner Heil vom Institut für Physik ab 2009 an der UCN-Forschungseinrichtung des Mainzer Reaktors ein Lebensdauerexperiment einrichten.

Ab 2009 wird am Reaktor auch ein zweiter Strahlrohrplatz für UCN-Experimente zur Verfügung stehen, was noch mehr Möglichkeiten für neue Versuche schafft und eine viel größere Flexibilität ermöglicht. Dies wird einer Kooperation der Mainzer Physiker mit dem Paul Scherrer Institut im schweizerischen Villigen zugute kommen. Dort wollen die Wissenschaftler in einem hochempfindlichen Experiment herausfinden, ob das Neutron im Innern über eine Ladungsverteilung verfügt, welche erklären könnte, weshalb wir heute nur Materie im Universum finden und nicht auch Antimaterie, die unmittelbar nach dem Urknall noch existiert hat.

Die hohe UCN-Dichte, die jetzt schon am Mainzer Forschungsreaktor erzeugt werden kann, wird durch die verschiedenen Neuerungen in den nächsten Jahren weiter gesteigert. "Die Kombination eines pulsbaren Reaktors mit der UCN-Herstellung in einem festen Deuteriumkristall bei Temperaturen um minus 270 Grad Celsius ist zusammen mit der Möglichkeit, die UCN-Speicherflaschen in Minutenabständen zu befüllen, weltweit einmalig und verschafft uns die hohe UCN-Dichte, die in einer derartigen Anordnung sonst zurzeit nirgends erreicht wird", führt Plonka-Spehr aus.

Originalveröffentlichung:
Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source, I. Altarev et al., The European Physical Journal A 37, 9-14 (2008)

DOI: 10.1140/epja/i2008-10604-8

Kontakt und Informationen:
Juniorprofessor Dr. Christian Plonka-Spehr
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25314
Fax 06131 39-25253
E-Mail: plonka@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://epja.edpsciences.org/
http://www.uni-mainz.de/presse/20829.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie