Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eiskalt abgebremst: Mainzer Physiker erzeugen ultrakalte Neutronen am TRIGA-Reaktor

19.12.2008
Weltweit einmalige Bedingungen zur Herstellung und Speicherung ultrakalter Neutronen am Mainzer Forschungsreaktor

Wissenschaftler am Forschungsreaktor TRIGA der Johannes Gutenberg-Universität Mainz haben erstmals die Geschwindigkeitsverteilung von ultrakalten Neutronen (UCN) nach Austritt aus einem Deuterium-Eiskristall bestimmt.

"Damit sind wir ein gutes Stück vorangekommen, um künftig am Mainzer Forschungsreaktor große Mengen ultrakalter Neutronen zu speichern und sie genauer zu untersuchen", erklärt Prof. Dr. Christian Plonka-Spehr vom Institut für Kernchemie. Künftige Experimente sollen dabei helfen, mehr über das Neutron und seine Eigenschaften zu erfahren und dadurch einen Einblick in die Prozesse direkt nach dem Urknall und im frühen Universum zu erhalten. Die Erzeugung von ultrakalten Neutronen ist den Mainzern im Februar 2006 in enger Zusammenarbeit mit dem Physik Department der TU München erstmals gelungen. Seitdem wird dieser Bereich kontinuierlich ausgebaut.

Ausgangspunkt der Arbeiten ist der TRIGA-Reaktor: Normalerweise sind Neutronen zusammen mit Protonen im Atomkern gebunden. Während eines Pulses von 30 Millisekunden Dauer entstehen im Reaktor freie Neutronen, also nicht mehr gebundene Teilchen, mit einer mittleren thermischen Geschwindigkeit von 2.200 Metern pro Sekunde. In unmittelbarer Nähe des Reaktorkerns treffen sie auf einen Eisblock, der aus dem Wasserstoffisotop Deuterium besteht.

Die freien Neutronen übertragen bei dem Aufprall ihre gesamte Energie auf den Deuteriumkristall und werden dadurch auf Geschwindigkeiten um 5 Meter pro Sekunde abgebremst - man spricht nun von "ultrakalten Neutronen". Die ultrakalten Neutronen werden in einem drei Meter langen Extraktionsrohr, das sich an den Eiskristall anschließt, totalreflektiert und nicht wie normale Neutronen absorbiert. "Diese ultrakalten Neutronen verhalten sich wie ein Gas, wir können sie am Ende des Rohres speichern, zählen und beobachten", sagt Plonka-Spehr. Der Physiker hat eine Juniorprofessur inne, die die Carl-Zeiss-Stiftung Anfang des Jahres 2008 speziell zu diesem Thema am Institut für Kernchemie eingerichtet hat.

Anerkennung in der Fachpresse fanden insbesondere die Arbeiten zur Geschwindigkeitsverteilung der ultrakalten Neutronen nach ihrem Austritt aus dem Deuteriumkristall. "Mit diesen Ergebnissen können wir unsere Experimente optimal an die UCN-Quelle anpassen", so Plonka-Spehr. Eine weitere Verbesserung wird ein neu installierter Helium-Tank bringen, der in den vergangenen Tagen eingerichtet wurde und 1500 Liter flüssiges Helium bei einer Temperatur von etwa minus 270 Grad Celsius speichert. "Der Tank ist wie eine riesige Thermoskanne, aus der wir über Tage und Wochen flüssiges Helium entnehmen können, um den Deuteriumkristall an der Strahlrohrnase zu kühlen." Damit ist die Arbeitsgruppe künftig in der Lage, auch Langzeitexperimente mit ultrakalten Neutronen durchzuführen.

Solche Langzeitexperimente, die dann über mehrere Wochen laufen, sind zum Beispiel für die Bestimmung der Lebensdauer des Neutrons wichtig. Das Neutron hat eine Halbwertszeit von etwa 15 Minuten, wonach es zerfällt. Die Neutronenlebensdauer hat eine wichtige Rolle bei der Entstehung der ersten Elemente unmittelbar nach dem Urknall gespielt und hat einen entscheidenden Einfluss darauf, wie häufig die leichtesten Elemente im Universum vorkommen. "Die Experimente zur Neutronenlebensdauer liefern zurzeit widersprüchliche Daten. Da möchten wir jetzt in Mainz mit den Messungen an unserer UCN-Quelle gerne mehr Klarheit erhalten." In Zusammenarbeit mit einem Team russischer Wissenschaftler werden Plonka-Spehr und Univ.-Prof. Dr. Werner Heil vom Institut für Physik ab 2009 an der UCN-Forschungseinrichtung des Mainzer Reaktors ein Lebensdauerexperiment einrichten.

Ab 2009 wird am Reaktor auch ein zweiter Strahlrohrplatz für UCN-Experimente zur Verfügung stehen, was noch mehr Möglichkeiten für neue Versuche schafft und eine viel größere Flexibilität ermöglicht. Dies wird einer Kooperation der Mainzer Physiker mit dem Paul Scherrer Institut im schweizerischen Villigen zugute kommen. Dort wollen die Wissenschaftler in einem hochempfindlichen Experiment herausfinden, ob das Neutron im Innern über eine Ladungsverteilung verfügt, welche erklären könnte, weshalb wir heute nur Materie im Universum finden und nicht auch Antimaterie, die unmittelbar nach dem Urknall noch existiert hat.

Die hohe UCN-Dichte, die jetzt schon am Mainzer Forschungsreaktor erzeugt werden kann, wird durch die verschiedenen Neuerungen in den nächsten Jahren weiter gesteigert. "Die Kombination eines pulsbaren Reaktors mit der UCN-Herstellung in einem festen Deuteriumkristall bei Temperaturen um minus 270 Grad Celsius ist zusammen mit der Möglichkeit, die UCN-Speicherflaschen in Minutenabständen zu befüllen, weltweit einmalig und verschafft uns die hohe UCN-Dichte, die in einer derartigen Anordnung sonst zurzeit nirgends erreicht wird", führt Plonka-Spehr aus.

Originalveröffentlichung:
Neutron velocity distribution from a superthermal solid 2H2 ultracold neutron source, I. Altarev et al., The European Physical Journal A 37, 9-14 (2008)

DOI: 10.1140/epja/i2008-10604-8

Kontakt und Informationen:
Juniorprofessor Dr. Christian Plonka-Spehr
Institut für Kernchemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25314
Fax 06131 39-25253
E-Mail: plonka@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.kernchemie.uni-mainz.de
http://epja.edpsciences.org/
http://www.uni-mainz.de/presse/20829.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics