Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzigartiges Röntgenmikroskop in Betrieb genommen

27.11.2009
Genauer als jemals zuvor lassen sich Oberflächen durch ein bisher einzigartiges Röntgenmikroskop, das NanoXAS-Mikrospektroskop, chemisch abbilden.

Möglich ist das, weil die Stärken zweier Nanosonden verknüpft werden: die der Rasterkraftmikroskopie und der Röntgenmikrospektroskopie.

Das NanoXAS-Mikrospektroskop wurde durch die Kollaboration des Schweizer Paul-Scherrer-Instituts mit Prof. Dr. Rainer Fink vom Department Chemie und Pharmazie der Universität Erlangen-Nürnberg und Prof. Dr. Eckhart Rühl von der Freien Universität Berlin mit Förderung des Bundesministeriums für Bildung und Forschung (BMBF) aufgebaut.

Im November 2009 wurde das neue Instrument mit einer feierlichen Zeremonie offiziell eingeweiht.

Mit der fortschreitenden Miniaturisierung in technologischen Produkten ist es nötig, Materialien mit höchster Ortsauflösung zu untersuchen. Eine Vielzahl von Mikrosonden, die Abbildungen auf der Längenskala weniger Nanometer liefern, steht bereits zur Verfügung. Wenn nun gleichzeitig die chemischen und magnetischen oder elektrischen Eigenschaften auf derselben Längenskala erforscht werden können, bedeutet das einen großen Schritt nach vorn. Das neue NanoXAS-Mikroskop an der Synchrotron Lichtquelle Schweiz (SLS) des Paul-Scherrer-Instituts soll dies leisten und eine beinahe nanometergenaue "chemische oder magnetische Landkarte" eines Materials erstellen.

NanoXAS kombiniert die Röntgenabsorptionsanalyse (XAS) und die Rastersondenmikroskopie. Mit XAS kann man bestimmen, welche chemischen Elemente in welchem chemischen oder magnetischen Zustand in einem Material enthalten sind - bei den derzeit besten Geräten für Bereiche, die nur einige zehn Nanometer groß sind. Mit der Rastersondenmikroskopie, bei der man eine Oberfläche mit einer feinen Spitze abtastet, kann man im günstigsten Fall die genaue Position von jedem einzelnen Atom bestimmen. Die Kombination der beiden Methoden erlaubt es erstmals, gleichzeitig zu bestimmen, wo sich Atome befinden und zu welchem chemischen Element sie gehören. So erhält man ein Abbild der Struktur und der Eigenschaften von Materialien mit nahezu atomarer Genauigkeit.

Die mikrospektroskopische Analytik mit Röntgenstrahlen erfordert sehr hohe Leuchtdichten, die bislang nur an so genannten Elektronenspeicherringen verfügbar ist. Dort wird sehr intensives und energiereiches Licht, die sogenannte Synchrotronstrahlung, erzeugt. Mit speziellen Röntgenoptiken werden die Strahlen auf einen Durchmesser von wenigen 10 Nanometern gebündelt - das ist das "erste Auge". Im NanoXAS-Mikroskop werden die mithilfe der Nanofabrikation modifizierten Spitzen eines Rasterkraftmikroskops als feinste Elektronendetektoren eingesetzt, ein "zweites Auge", um die Ortsauflösung eines gewöhnlichen Röntgenmikroskops drastisch zu verbessern. Auf diese Weise können bislang unerreichte Auflösungen in der Röntgenmikroskopie erzielt werden.

Die Anwendungen konzentrieren sich zunächst auf den Bereich der Materialforschung, etwa auf neuartige Magnetstrukturen für die Speichertechnologie oder organische Nanostrukturen für die Molekularelektronik. Die Arbeiten des Erlanger Forscherteams bei NanoXAS befassen sich beispielsweise mit organischen Dünnschichten für den Einsatz in der molekularen Elektronik. Mithilfe der Röntgenspektroskopie lassen sich die lokalen chemischen Eigenschaften analysieren und danach mit strukturellen Eigenschaften aus den Ergebnissen der Rastersondenmikroskopie in Beziehung setzen. Damit sollten Transporteigenschaften im organischen Bauteil mit strukturellen Inhomogenitäten korreliert werden können. Kleinste Änderungen in der elektronischen Struktur sind mithilfe der Röntgenabsorption spektroskopisch nachweisbar. Andere Untersuchungsobjekte sind kohlenstoff-basierte Nanosysteme (Nanoröhren) oder organische Hybridmaterialien für medizinische Anwendungen, zur bildgebenden Analytik (sogenannte "microballoons") oder Mikrogele, die als Container für Pharmawirkstoffe ("drug delivery") geeignet sind.

Prof. Fink betreibt zusammen mit den Schweizer Partnern bereits seit vier Jahren das Mikrospektroskop PolLux am Paul-Scherrer-Institut (PSI), das sehr erfolgreich für die Material- und Umweltforschung eingesetzt wird. Für die beiden Mikrospektroskopie-Projekte hat die Arbeitsgruppe am Erlanger Lehrstuhl für Physikalische Chemie II insgesamt 1,7 Millionen Euro vom BMBF eingeworben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Prof. Dr. Rainer Fink
Tel.: 09131/85-27322
rainer.fink@chemie.uni-erlangen.de

Sandra Kurze | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

nachricht 3D-Graphen: Experiment an BESSY II zeigt, dass optische Eigenschaften einstellbar sind
24.05.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Tumult im trägen Elektronen-Dasein

Ein internationales Team von Physikern hat erstmals das Streuverhalten von Elektronen in einem nichtleitenden Material direkt beobachtet. Ihre Erkenntnisse könnten der Strahlungsmedizin zu Gute kommen.

Elektronen in nichtleitenden Materialien könnte man Trägheit nachsagen. In der Regel bleiben sie an ihren Plätzen, tief im Inneren eines solchen Atomverbunds....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Meeresschutz im Fokus: Das IASS auf der UN-Ozean-Konferenz in New York vom 5.-9. Juni

24.05.2017 | Veranstaltungen

Diabetes Kongress in Hamburg beginnt heute: Rund 6000 Teilnehmer werden erwartet

24.05.2017 | Veranstaltungen

Wissensbuffet: „All you can eat – and learn”

24.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

DFG fördert 15 neue Sonderforschungsbereiche (SFB)

26.05.2017 | Förderungen Preise

Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

26.05.2017 | Biowissenschaften Chemie

Unglaublich formbar: Lesen lernen krempelt Gehirn selbst bei Erwachsenen tiefgreifend um

26.05.2017 | Gesellschaftswissenschaften