Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzigartiges Röntgenmikroskop in Betrieb genommen

27.11.2009
Genauer als jemals zuvor lassen sich Oberflächen durch ein bisher einzigartiges Röntgenmikroskop, das NanoXAS-Mikrospektroskop, chemisch abbilden.

Möglich ist das, weil die Stärken zweier Nanosonden verknüpft werden: die der Rasterkraftmikroskopie und der Röntgenmikrospektroskopie.

Das NanoXAS-Mikrospektroskop wurde durch die Kollaboration des Schweizer Paul-Scherrer-Instituts mit Prof. Dr. Rainer Fink vom Department Chemie und Pharmazie der Universität Erlangen-Nürnberg und Prof. Dr. Eckhart Rühl von der Freien Universität Berlin mit Förderung des Bundesministeriums für Bildung und Forschung (BMBF) aufgebaut.

Im November 2009 wurde das neue Instrument mit einer feierlichen Zeremonie offiziell eingeweiht.

Mit der fortschreitenden Miniaturisierung in technologischen Produkten ist es nötig, Materialien mit höchster Ortsauflösung zu untersuchen. Eine Vielzahl von Mikrosonden, die Abbildungen auf der Längenskala weniger Nanometer liefern, steht bereits zur Verfügung. Wenn nun gleichzeitig die chemischen und magnetischen oder elektrischen Eigenschaften auf derselben Längenskala erforscht werden können, bedeutet das einen großen Schritt nach vorn. Das neue NanoXAS-Mikroskop an der Synchrotron Lichtquelle Schweiz (SLS) des Paul-Scherrer-Instituts soll dies leisten und eine beinahe nanometergenaue "chemische oder magnetische Landkarte" eines Materials erstellen.

NanoXAS kombiniert die Röntgenabsorptionsanalyse (XAS) und die Rastersondenmikroskopie. Mit XAS kann man bestimmen, welche chemischen Elemente in welchem chemischen oder magnetischen Zustand in einem Material enthalten sind - bei den derzeit besten Geräten für Bereiche, die nur einige zehn Nanometer groß sind. Mit der Rastersondenmikroskopie, bei der man eine Oberfläche mit einer feinen Spitze abtastet, kann man im günstigsten Fall die genaue Position von jedem einzelnen Atom bestimmen. Die Kombination der beiden Methoden erlaubt es erstmals, gleichzeitig zu bestimmen, wo sich Atome befinden und zu welchem chemischen Element sie gehören. So erhält man ein Abbild der Struktur und der Eigenschaften von Materialien mit nahezu atomarer Genauigkeit.

Die mikrospektroskopische Analytik mit Röntgenstrahlen erfordert sehr hohe Leuchtdichten, die bislang nur an so genannten Elektronenspeicherringen verfügbar ist. Dort wird sehr intensives und energiereiches Licht, die sogenannte Synchrotronstrahlung, erzeugt. Mit speziellen Röntgenoptiken werden die Strahlen auf einen Durchmesser von wenigen 10 Nanometern gebündelt - das ist das "erste Auge". Im NanoXAS-Mikroskop werden die mithilfe der Nanofabrikation modifizierten Spitzen eines Rasterkraftmikroskops als feinste Elektronendetektoren eingesetzt, ein "zweites Auge", um die Ortsauflösung eines gewöhnlichen Röntgenmikroskops drastisch zu verbessern. Auf diese Weise können bislang unerreichte Auflösungen in der Röntgenmikroskopie erzielt werden.

Die Anwendungen konzentrieren sich zunächst auf den Bereich der Materialforschung, etwa auf neuartige Magnetstrukturen für die Speichertechnologie oder organische Nanostrukturen für die Molekularelektronik. Die Arbeiten des Erlanger Forscherteams bei NanoXAS befassen sich beispielsweise mit organischen Dünnschichten für den Einsatz in der molekularen Elektronik. Mithilfe der Röntgenspektroskopie lassen sich die lokalen chemischen Eigenschaften analysieren und danach mit strukturellen Eigenschaften aus den Ergebnissen der Rastersondenmikroskopie in Beziehung setzen. Damit sollten Transporteigenschaften im organischen Bauteil mit strukturellen Inhomogenitäten korreliert werden können. Kleinste Änderungen in der elektronischen Struktur sind mithilfe der Röntgenabsorption spektroskopisch nachweisbar. Andere Untersuchungsobjekte sind kohlenstoff-basierte Nanosysteme (Nanoröhren) oder organische Hybridmaterialien für medizinische Anwendungen, zur bildgebenden Analytik (sogenannte "microballoons") oder Mikrogele, die als Container für Pharmawirkstoffe ("drug delivery") geeignet sind.

Prof. Fink betreibt zusammen mit den Schweizer Partnern bereits seit vier Jahren das Mikrospektroskop PolLux am Paul-Scherrer-Institut (PSI), das sehr erfolgreich für die Material- und Umweltforschung eingesetzt wird. Für die beiden Mikrospektroskopie-Projekte hat die Arbeitsgruppe am Erlanger Lehrstuhl für Physikalische Chemie II insgesamt 1,7 Millionen Euro vom BMBF eingeworben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Prof. Dr. Rainer Fink
Tel.: 09131/85-27322
rainer.fink@chemie.uni-erlangen.de

Sandra Kurze | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten