Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzigartiges Röntgenmikroskop in Betrieb genommen

27.11.2009
Genauer als jemals zuvor lassen sich Oberflächen durch ein bisher einzigartiges Röntgenmikroskop, das NanoXAS-Mikrospektroskop, chemisch abbilden.

Möglich ist das, weil die Stärken zweier Nanosonden verknüpft werden: die der Rasterkraftmikroskopie und der Röntgenmikrospektroskopie.

Das NanoXAS-Mikrospektroskop wurde durch die Kollaboration des Schweizer Paul-Scherrer-Instituts mit Prof. Dr. Rainer Fink vom Department Chemie und Pharmazie der Universität Erlangen-Nürnberg und Prof. Dr. Eckhart Rühl von der Freien Universität Berlin mit Förderung des Bundesministeriums für Bildung und Forschung (BMBF) aufgebaut.

Im November 2009 wurde das neue Instrument mit einer feierlichen Zeremonie offiziell eingeweiht.

Mit der fortschreitenden Miniaturisierung in technologischen Produkten ist es nötig, Materialien mit höchster Ortsauflösung zu untersuchen. Eine Vielzahl von Mikrosonden, die Abbildungen auf der Längenskala weniger Nanometer liefern, steht bereits zur Verfügung. Wenn nun gleichzeitig die chemischen und magnetischen oder elektrischen Eigenschaften auf derselben Längenskala erforscht werden können, bedeutet das einen großen Schritt nach vorn. Das neue NanoXAS-Mikroskop an der Synchrotron Lichtquelle Schweiz (SLS) des Paul-Scherrer-Instituts soll dies leisten und eine beinahe nanometergenaue "chemische oder magnetische Landkarte" eines Materials erstellen.

NanoXAS kombiniert die Röntgenabsorptionsanalyse (XAS) und die Rastersondenmikroskopie. Mit XAS kann man bestimmen, welche chemischen Elemente in welchem chemischen oder magnetischen Zustand in einem Material enthalten sind - bei den derzeit besten Geräten für Bereiche, die nur einige zehn Nanometer groß sind. Mit der Rastersondenmikroskopie, bei der man eine Oberfläche mit einer feinen Spitze abtastet, kann man im günstigsten Fall die genaue Position von jedem einzelnen Atom bestimmen. Die Kombination der beiden Methoden erlaubt es erstmals, gleichzeitig zu bestimmen, wo sich Atome befinden und zu welchem chemischen Element sie gehören. So erhält man ein Abbild der Struktur und der Eigenschaften von Materialien mit nahezu atomarer Genauigkeit.

Die mikrospektroskopische Analytik mit Röntgenstrahlen erfordert sehr hohe Leuchtdichten, die bislang nur an so genannten Elektronenspeicherringen verfügbar ist. Dort wird sehr intensives und energiereiches Licht, die sogenannte Synchrotronstrahlung, erzeugt. Mit speziellen Röntgenoptiken werden die Strahlen auf einen Durchmesser von wenigen 10 Nanometern gebündelt - das ist das "erste Auge". Im NanoXAS-Mikroskop werden die mithilfe der Nanofabrikation modifizierten Spitzen eines Rasterkraftmikroskops als feinste Elektronendetektoren eingesetzt, ein "zweites Auge", um die Ortsauflösung eines gewöhnlichen Röntgenmikroskops drastisch zu verbessern. Auf diese Weise können bislang unerreichte Auflösungen in der Röntgenmikroskopie erzielt werden.

Die Anwendungen konzentrieren sich zunächst auf den Bereich der Materialforschung, etwa auf neuartige Magnetstrukturen für die Speichertechnologie oder organische Nanostrukturen für die Molekularelektronik. Die Arbeiten des Erlanger Forscherteams bei NanoXAS befassen sich beispielsweise mit organischen Dünnschichten für den Einsatz in der molekularen Elektronik. Mithilfe der Röntgenspektroskopie lassen sich die lokalen chemischen Eigenschaften analysieren und danach mit strukturellen Eigenschaften aus den Ergebnissen der Rastersondenmikroskopie in Beziehung setzen. Damit sollten Transporteigenschaften im organischen Bauteil mit strukturellen Inhomogenitäten korreliert werden können. Kleinste Änderungen in der elektronischen Struktur sind mithilfe der Röntgenabsorption spektroskopisch nachweisbar. Andere Untersuchungsobjekte sind kohlenstoff-basierte Nanosysteme (Nanoröhren) oder organische Hybridmaterialien für medizinische Anwendungen, zur bildgebenden Analytik (sogenannte "microballoons") oder Mikrogele, die als Container für Pharmawirkstoffe ("drug delivery") geeignet sind.

Prof. Fink betreibt zusammen mit den Schweizer Partnern bereits seit vier Jahren das Mikrospektroskop PolLux am Paul-Scherrer-Institut (PSI), das sehr erfolgreich für die Material- und Umweltforschung eingesetzt wird. Für die beiden Mikrospektroskopie-Projekte hat die Arbeitsgruppe am Erlanger Lehrstuhl für Physikalische Chemie II insgesamt 1,7 Millionen Euro vom BMBF eingeworben.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 27.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Weitere Informationen für die Medien:

Prof. Dr. Rainer Fink
Tel.: 09131/85-27322
rainer.fink@chemie.uni-erlangen.de

Sandra Kurze | idw
Weitere Informationen:
http://www.uni-erlangen.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D

19.09.2017 | Biowissenschaften Chemie

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten

Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie

19.09.2017 | Förderungen Preise