Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelnes Caesium-Atom als Lichtschalter

21.09.2009
Physiker der Universität Bonn können einen Quantensprung verkünden - und das nicht nur im übertragenen Sinne: Sie haben kürzlich tatsächliche Quantensprünge sichtbar machen können. Dazu nutzten sie ein einzelnes Caesium-Atom, das ihnen gewissermaßen als Lichtschalter diente. Weitere Zutat ihrer Methode: die besten Spiegel, die heute weltweit erhältlich sind. Die Forscher haben ihre Ergebnisse jetzt in den Physical Review Letters veröffentlicht (doi: 10.1103/PhysRevLett.103.123006).

Wer sich schon mal zwischen zwei Spiegel gestellt hat, kennt den Effekt: Das eigene Bild scheint sich - immer kleiner werdend - endlos zu wiederholen. In Wirklichkeit wird das Bild aber schon nach ein paar Dutzend Reflektionen zu schwach, als dass man noch viel erkennen könnte. Grund: Spiegel reflektieren immer nur einen Teil des Lichts, den Rest verschlucken sie.

Nicht anders ist das bei den Spiegeln, die die Forscher am Institut für Angewandte Physik um Professor Dr. Dieter Meschede eingesetzt haben. Ein wenig besser als die in einem durchschnittlichen Badezimmer sind sie allerdings schon: Etwa 300.000 Mal können sie mit dem Licht Ping-Pong spielen, bevor es sich verliert. "Es gibt momentan keine Spiegelschicht, die im optischen Bereich noch besser reflektieren würde", betont der Bonner Physiker Dr. Wolfgang Alt.

Die Spiegel sind so gut, dass sich Licht zwischen ihnen einsperren lässt. Wenn man das tut, kann man mit einer kleinen Lichtmenge Messungen durchführen, für die man sonst sehr viel Licht benötigen würde. Gleichzeitig verringert sich die Gefahr, dass das Licht die Messung stört. Und genau das ist es, was die Bonner Physiker versuchen wollten: Messen, ohne das Ergebnis durch die Messung zu beeinflussen.

Caesium als Lichtschalter

"Wir haben dazu zwischen zwei Mini-Spiegel ein Caesium-Atom gesperrt und dann einen Laserstrahl eingekoppelt", erklärt Alt. "Das Caesium konnte dabei in zwei verschiedenen Zuständen vorliegen: Im Zustand 0 verhinderte es, dass sich der Bereich zwischen den Spiegeln mit Licht füllte. Im Zustand 1 störte es den Laserstrahl dagegen nicht." Das Licht signalisiert so den Zustand des Atoms.

Genau genommen war das Ganze noch ein wenig komplizierter: Atome sind Quantenteilchen, die in einer Überlagerung verschiedener Zustände existieren können. Physiker sprechen auch von einer Superposition. Das Caesium war also gewissermaßen gleichzeitig ein wenig im Zustand 0 und ein bisschen im Zustand 1. Wenn man den Zustand eines solchen Atoms misst, wird die Superposition zerstört. Das ist ein physikalisches Naturgesetz und gilt selbst für die perfekte Messung.

Was würde man also erwarten, wenn man ein solches wankelmütiges Caesium zwischen die Spiegel sperrt? Es sollte sich entweder für den Zustand 0 entscheiden und damit das Licht im Spiegelkabinett ausknipsen. Oder es nimmt den Zustand 1 an und stört den Laserstrahl nicht. "Das ist genau das, was wir auch sehen", sagt Alts Kollege Dr. Artur Widera. "Das Licht in unserer Apparatur ist immer entweder ganz an oder ganz aus."

Caesium-Atome sind Mimosen

Gleichzeitig sind Caesium-Atome Mimosen: Sie lassen sich durch Licht leicht von einem Zustand in den anderen schubsen - aus 0 wird 1, aus 1 wird 0. Physiker sprechen auch von Quantensprüngen. Diese Sprünge sorgen dafür, dass das Licht zwischen den Spiegeln flackert. Normalerweise würde das so schnell erfolgen, dass sich dieses Flackern nicht sichtbar machen ließe. "Wir benötigten aber aufgrund unserer Spiegel-Konstruktion nur sehr schwache Lichtintensitäten", sagt Alt. "Entsprechend gering ist der Störeinfluss, den unsere Messung auf den Zustand des Caesiums ausübte. Die Quantensprünge erfolgten daher relativ selten - so selten, dass wir live beobachten konnten, dass das Licht zwischen den Spiegeln an- und ausgeschaltet wurde."

Das Ergebnis dokumentiert aber auch, wie extrem empfindlich Quantensysteme sind. Wolfgang Alt: "Im Grunde genommen zeigen uns derartige Quantensprünge, dass unsere Messungen zwar gut, aber noch nicht perfekt sind. Wir müssen nun lernen, derartige Störeffekte komplett auszuschalten. Erst dann können wir an Anwendungen wie den Quantencomputer überhaupt denken."

Kontakt:
Dr. Wolfgang Alt
Institut für Angewandte Physik der Universität Bonn
Telefon: 0228/73-3471
E-Mail: w.alt@iap.uni-bonn.de

Frank Luerweg | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Atom Caesium Caesium-Atom Laserstrahl Lichtschalter Physik Quantensprünge Superposition

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie