Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einzelnen Atomen beim Zur-Ruhe-Gehen zusehen - "Quantensimulation" in Nature Physics veröffentlicht

20.02.2012
Wissenschaftler der Freien Universität Berlin, des Max-Planck-Instituts für Quantenoptik und der Ludwig-Maximilians-Universität München (LMU) haben mit Experimenten erstmals das dynamische Verhalten korrelierter einzelner Atome in Festkörpern simuliert. Es gelang ihnen, Atome in sogenannten optischen Gittern aufzureihen und deren dynamisches Verhalten zu beobachten, das durch das komplexe Zusammenspiel mit anderen Atomen bestimmt ist.

Von den Ergebnissen versprechen sich die Wissenschaftler grundlegende Erkenntnisse und Antworten auf wissenschaftlich alte und bedeutsame Fragen. Sie können dadurch beispielsweise klären, wie Systeme, die aus dem Gleichgewicht gebracht wurden, dorthin zurückkommen und wie makroskopische Eigenschaften entstehen – etwa die, eine bestimmte Temperatur zu haben. Die Experimente und zugrundeliegenden Theorien wurden in der jüngsten Ausgabe der renommierten Zeitschrift Nature Physics veröffentlicht.

Das neue Experiment wurde von der Arbeitsgruppe um Immanuel Bloch am Max-Planck-Institut für Quantenoptik vorgenommen; unterstützt wurde es von neuen analytischen Überlegungen und numerischen Rechnungen auf Supercomputern durch die Gruppen von Uli Schollwöck an der LMU München und Jens Eisert an der Freien Universität Berlin. Ergebnis sind erste Daten zu stark korrelierten einzelnen Atomen in optischen Gittern, die geschickt aus ihrem Gleichgewichtszustand gestoßen wurden.

Atome sind die Grundbausteine der Materie. Alle Dinge, die uns umgeben, sind aus diesen kleinsten Teilchen aufgebaut. Mit dem bloßen Auge sehen können wir sie freilich nicht: Mit einer Größe eines Zehnmillionstel Millimeters sind sie sogar viel kleiner als die Wellenlänge des sichtbaren Lichts. In Festkörpern sind diese Teilchen meist in regelmäßigen Strukturen angeordnet, in Gasen schwirren sie wild durcheinander. In allen Aggregatzuständen hat man aber in makroskopischen Objekten immer mit einer dermaßen großen Anzahl solcher Atome zu tun, dass über viele Jahrzehnte das Experimentieren mit einzelnen solcher Atome undenkbar und geradezu absurd erschien.

Erst neue Experimente haben diese Situation radikal geändert. Insbesondere erlauben sogenannte optische Gitter das Aufreihen einzelner Atome in Strukturen, die im Prinzip genau so aussehen wie in einem normalen Festkörper: Nur kann man in einer solchen Situation im Labor sehr genau die Eigenschaften dieser einzelnen zusammenspielenden Atome genau bestimmen und beobachten. Optische Gitter kann man sich wie einen Eierkarton aus Licht vorstellen: Für die neuen Experimente setzten die Wissenschaftler Laserlicht auf eine Weise ein, dass die Atome gewissermaßen eine periodische Muldenlandschaft vorfanden: In jede dieser Mulden konnten sie - einem Ei gleichend - ein einzelnes Atom setzen. Einmal in einer solchen Struktur gefangen, verhielten sich die Atome wie in einem natürlichen Material. Allerdings konnten mit diesen Atomen in künstlichen Strukturen weitaus genauere Messungen vorgenommen werden, als dies in einem „natürlichen“ Festkörper auch nur entfernt vorstellbar ist. Und so eröffnen sich Wissenschaftlern ungeahnte neue Möglichkeiten, Fragen vom konzertierten Zusammenspiel vieler Atome zu klären.

Diese Fragen sind umso spannender, weil die Naturgesetze, die auf der Größenskala der Atome gelten, sogenannte „Quantengesetze“ sind. In dieser Welt der sogenannten Quantenmechanik gelten oft sehr andere Regeln als die, die wir aus der Alltagswelt kennen. Sie sind oft nicht intuitiv und zuweilen paradox. Selbst von dem genauen Ort eines Atoms zu sprechen, ergibt in aller Regel keinen Sinn.

Zwar sind Eigenschaften wie „Temperatur“ auf der Makroskala, wie wir sie kennen, natürlich gang und gäbe. Doch auf der Mikroskala ist die Temperatur gar nicht ohne Weiteres erklärt, und die fundamentalen Grundgleichungen der Physik definieren den Begriff der Temperatur nicht einmal. In dem nun vorgestellten Experiment sieht man zeitaufgelöst durch sehr genaue Messungen, wie komplexe Quantensysteme ins Gleichgewicht kommen, wie Temperatur entsteht, und wie das „typisch Quantische“ in stark korrelierten Vielteilchensystemen mit der Zeit verloren geht. Man sieht, wie durch Wechselwirkung miteinander – aber ohne ein äußeres Bad, das eine Temperatur vorgibt – Gleichgewichtszustände gewissermaßen von selbst entstehen. Einzelnen Atomen kann man so zusehen, wie sie zur „Ruhe kommen“.

Das nun in Nature Physics veröffentlichte Experiment und die Theorie dazu ist auch aus der Sicht der Diskussion über Supercomputer interessant: Denn um die Dynamik der wechselwirkenden Vielteilchensysteme nachzuvollziehen, muss man Superrechner derzeit mehrere Wochen laufen lassen, und man stößt an die Grenzen des bisher Machbaren. So kann man für kurze Zeiten gerade noch die Dynamik verstehen. Für lange Zeiten ist das Experiment aber weit leistungsfähiger als die klassische Simulation – und stellt so eine „Quantensimulation“ dar. So kann man in der Tat neue Fragen über die Natur beantworten. Aber nicht, indem man bisher zugängliche Simulationen mit Superrechnern macht – die ja den Gesetzen der klassischen Physik genügen. Sondern indem man genau im Labor kontrollierte komplexe Quantensysteme im Experiment befragt. Im Labor wird die Natur nachgestellt.

Weitere Informationen
Jens Eisert, Professor am Dahlem Center for Complex Quantum Systems der Freien Universität Berlin, E-Mail: jense@physik.fu-berlin.de, Telefon: 030 / 838-55531

Carsten Wette | idw
Weitere Informationen:
http://www.fu-berlin.de
http://www.nature.com/nphys/journal/vaop/ncurrent/abs/nphys2232.html

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie