Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsteins Formel in neuem Licht

14.02.2014
Physiker der Universitäten Jena und Graz simulieren die effektive Masse von Elementarteilchen

Einsteins berühmte Formel E=mc2 beschreibt den Zusammenhang von Energie und Masse: Je massereicher ein Objekt oder Teilchen und je schneller es sich bewegt, umso größer seine Energie.

„Anders als die Geschwindigkeit ist dabei die Masse eines Körpers eine feststehende Größe, zumindest unserer Alltagserfahrung nach“, macht Prof. Dr. Holger Gies von der Friedrich-Schiller-Universität Jena und dem Helmholtz-Institut Jena deutlich. Dennoch, so der theoretische Physiker weiter, habe sich in der modernen Physik das Konzept einer „effektiven“ Masse für Elementarteilchen durchgesetzt.

Demnach kann sich die Masse eines Teilchens durch Wechselwirkung mit seiner Umgebung effektiv verändern: Beispielsweise können sich Elektronen innerhalb von Kristallen so verhalten, als hätten sie vorübergehend eine größere Masse.

„Selbst den größten Teil unseres Körpergewichts, welches von den Kernen der Atome getragen wird, können wir als kollektive Effekte von sehr viel leichteren Grundbausteinen – den Quarks – verstehen“, erklärt Prof. Dr. Reinhard Alkofer von der Uni Graz, Mit-Autor einer neuen gemeinsamen Studie und Experte für die Theorie der starken Kernkraft. Nicht zuletzt fügen sich die fundamentalen Massen der Elementarteilchen in dieses Schema ein: sie können durch Wechselwirkung mit dem umgebenden Higgs-Feld verstanden werden. Diese Erkenntnis wurde kürzlich mit dem Nobelpreis für Physik geehrt.

Um die effektive Masse auch „dingfest“ zu machen, muss sie allerdings mit einer Messgröße verknüpft werden können. Nicht immer gelingt dies den Physikern: beispielsweise wurde jahrzehntelang diskutiert, ob die effektive Masse, die der russische Physiker Volkov 1935 für das Elektron im Feld eines starken Lasers eingeführt hat, tatsächlich gemessen werden kann. Zu diesem Zweck haben die theoretischen Physiker aus Graz und Jena nun einen Effekt studiert, der besonders empfindlich von der Masse abhängt: den spontanen Zerfall des Vakuums.

In einem extrem starken elektrischen Feld, etwa erzeugt durch einen Hochintensitätslaser, komme es zu einem spontanen Zerfall des Vakuums in Paare von Materie und Antimaterie, erläutert das Forscherteam. In der aktuellen Ausgabe des renommierten Fachblattes Physical Review Letters zeigen die Physiker mit Hilfe von Computersimulationen, wie Elektronen und Positronen mit unterschiedlichen „effektiven“ Massen erzeugt werden können. „Zwar sind heutige Laser noch nicht in der Lage, ein solches Experiment durchzuführen, jedoch können wir diesen Prozess präzise in Computer-Clustern simulieren“, betont Physik-Doktorand Christian Kohlfürst. Er hat für die aktuelle Studie seine Heimat-Uni Graz gegen die Jenaer Institute eingetauscht und hier ein Auslandssemester verbracht.

In der Simulation des Vakuumzerfalls ist Einsteins berühmte Formel E=mc2 am Werk: Denn die Energie des elektrischen Feldes wird in die Masse der entstehenden Teilchen umgewandelt. Und wie die Physiker aus Jena und Graz in ihren Simulationen zeigen konnten, lasse sich die Masse der Teilchen variieren: Je stärker das simulierte elektrische Feld ist, desto schwerer sind die Zwillings-Paare aus Materie und Antimaterie, die das zerfallende Vakuum hervorbringt.

Das Forscherteam hofft nun, dass seine Simulationen in künftigen Laserexperimenten bestätigt werden. Der Gedanke, dass sogar die Massen der Elementarteilchen mit Licht gesteuert werden können, ist für die Wissenschaftler außerordentlich faszinierend. Für praktische Anwendungen im Alltag tauge diese Erkenntnis aber nicht. „Es wäre aussichtslos zu versuchen, auf diese Weise etwa den eigenen Körper zum Wunschgewicht bringen zu wollen“, so die Forscher mit einem Augenzwinkern.

Original-Publikation:
Kohlfürst C et al.: Effective mass signatures in multiphoton pair production, Physical Review Letters 2014, URLs: http://link.aps.org/doi/10.1103/PhysRevLett.112.050402 und http://arxiv.org/abs/arXiv:1310.7836, DOI: 10.1103/PhysRevLett.112.050402
Kontakt:
Prof. Dr. Holger Gies
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641 / 947190
E-Mail: Holger.Gies[at]uni-jena.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.112.050402
http://arxiv.org/abs/arXiv:1310.7836

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen