Einsteins Formel in neuem Licht

Einsteins berühmte Formel E=mc2 beschreibt den Zusammenhang von Energie und Masse: Je massereicher ein Objekt oder Teilchen und je schneller es sich bewegt, umso größer seine Energie.

„Anders als die Geschwindigkeit ist dabei die Masse eines Körpers eine feststehende Größe, zumindest unserer Alltagserfahrung nach“, macht Prof. Dr. Holger Gies von der Friedrich-Schiller-Universität Jena und dem Helmholtz-Institut Jena deutlich. Dennoch, so der theoretische Physiker weiter, habe sich in der modernen Physik das Konzept einer „effektiven“ Masse für Elementarteilchen durchgesetzt.

Demnach kann sich die Masse eines Teilchens durch Wechselwirkung mit seiner Umgebung effektiv verändern: Beispielsweise können sich Elektronen innerhalb von Kristallen so verhalten, als hätten sie vorübergehend eine größere Masse.

„Selbst den größten Teil unseres Körpergewichts, welches von den Kernen der Atome getragen wird, können wir als kollektive Effekte von sehr viel leichteren Grundbausteinen – den Quarks – verstehen“, erklärt Prof. Dr. Reinhard Alkofer von der Uni Graz, Mit-Autor einer neuen gemeinsamen Studie und Experte für die Theorie der starken Kernkraft. Nicht zuletzt fügen sich die fundamentalen Massen der Elementarteilchen in dieses Schema ein: sie können durch Wechselwirkung mit dem umgebenden Higgs-Feld verstanden werden. Diese Erkenntnis wurde kürzlich mit dem Nobelpreis für Physik geehrt.

Um die effektive Masse auch „dingfest“ zu machen, muss sie allerdings mit einer Messgröße verknüpft werden können. Nicht immer gelingt dies den Physikern: beispielsweise wurde jahrzehntelang diskutiert, ob die effektive Masse, die der russische Physiker Volkov 1935 für das Elektron im Feld eines starken Lasers eingeführt hat, tatsächlich gemessen werden kann. Zu diesem Zweck haben die theoretischen Physiker aus Graz und Jena nun einen Effekt studiert, der besonders empfindlich von der Masse abhängt: den spontanen Zerfall des Vakuums.

In einem extrem starken elektrischen Feld, etwa erzeugt durch einen Hochintensitätslaser, komme es zu einem spontanen Zerfall des Vakuums in Paare von Materie und Antimaterie, erläutert das Forscherteam. In der aktuellen Ausgabe des renommierten Fachblattes Physical Review Letters zeigen die Physiker mit Hilfe von Computersimulationen, wie Elektronen und Positronen mit unterschiedlichen „effektiven“ Massen erzeugt werden können. „Zwar sind heutige Laser noch nicht in der Lage, ein solches Experiment durchzuführen, jedoch können wir diesen Prozess präzise in Computer-Clustern simulieren“, betont Physik-Doktorand Christian Kohlfürst. Er hat für die aktuelle Studie seine Heimat-Uni Graz gegen die Jenaer Institute eingetauscht und hier ein Auslandssemester verbracht.

In der Simulation des Vakuumzerfalls ist Einsteins berühmte Formel E=mc2 am Werk: Denn die Energie des elektrischen Feldes wird in die Masse der entstehenden Teilchen umgewandelt. Und wie die Physiker aus Jena und Graz in ihren Simulationen zeigen konnten, lasse sich die Masse der Teilchen variieren: Je stärker das simulierte elektrische Feld ist, desto schwerer sind die Zwillings-Paare aus Materie und Antimaterie, die das zerfallende Vakuum hervorbringt.

Das Forscherteam hofft nun, dass seine Simulationen in künftigen Laserexperimenten bestätigt werden. Der Gedanke, dass sogar die Massen der Elementarteilchen mit Licht gesteuert werden können, ist für die Wissenschaftler außerordentlich faszinierend. Für praktische Anwendungen im Alltag tauge diese Erkenntnis aber nicht. „Es wäre aussichtslos zu versuchen, auf diese Weise etwa den eigenen Körper zum Wunschgewicht bringen zu wollen“, so die Forscher mit einem Augenzwinkern.

Original-Publikation:
Kohlfürst C et al.: Effective mass signatures in multiphoton pair production, Physical Review Letters 2014, URLs: http://link.aps.org/doi/10.1103/PhysRevLett.112.050402 und http://arxiv.org/abs/arXiv:1310.7836, DOI: 10.1103/PhysRevLett.112.050402
Kontakt:
Prof. Dr. Holger Gies
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641 / 947190
E-Mail: Holger.Gies[at]uni-jena.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.112.050402
http://arxiv.org/abs/arXiv:1310.7836

Media Contact

Dr. Ute Schönfelder idw

Weitere Informationen:

http://www.uni-jena.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer