Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsteins Formel in neuem Licht

14.02.2014
Physiker der Universitäten Jena und Graz simulieren die effektive Masse von Elementarteilchen

Einsteins berühmte Formel E=mc2 beschreibt den Zusammenhang von Energie und Masse: Je massereicher ein Objekt oder Teilchen und je schneller es sich bewegt, umso größer seine Energie.

„Anders als die Geschwindigkeit ist dabei die Masse eines Körpers eine feststehende Größe, zumindest unserer Alltagserfahrung nach“, macht Prof. Dr. Holger Gies von der Friedrich-Schiller-Universität Jena und dem Helmholtz-Institut Jena deutlich. Dennoch, so der theoretische Physiker weiter, habe sich in der modernen Physik das Konzept einer „effektiven“ Masse für Elementarteilchen durchgesetzt.

Demnach kann sich die Masse eines Teilchens durch Wechselwirkung mit seiner Umgebung effektiv verändern: Beispielsweise können sich Elektronen innerhalb von Kristallen so verhalten, als hätten sie vorübergehend eine größere Masse.

„Selbst den größten Teil unseres Körpergewichts, welches von den Kernen der Atome getragen wird, können wir als kollektive Effekte von sehr viel leichteren Grundbausteinen – den Quarks – verstehen“, erklärt Prof. Dr. Reinhard Alkofer von der Uni Graz, Mit-Autor einer neuen gemeinsamen Studie und Experte für die Theorie der starken Kernkraft. Nicht zuletzt fügen sich die fundamentalen Massen der Elementarteilchen in dieses Schema ein: sie können durch Wechselwirkung mit dem umgebenden Higgs-Feld verstanden werden. Diese Erkenntnis wurde kürzlich mit dem Nobelpreis für Physik geehrt.

Um die effektive Masse auch „dingfest“ zu machen, muss sie allerdings mit einer Messgröße verknüpft werden können. Nicht immer gelingt dies den Physikern: beispielsweise wurde jahrzehntelang diskutiert, ob die effektive Masse, die der russische Physiker Volkov 1935 für das Elektron im Feld eines starken Lasers eingeführt hat, tatsächlich gemessen werden kann. Zu diesem Zweck haben die theoretischen Physiker aus Graz und Jena nun einen Effekt studiert, der besonders empfindlich von der Masse abhängt: den spontanen Zerfall des Vakuums.

In einem extrem starken elektrischen Feld, etwa erzeugt durch einen Hochintensitätslaser, komme es zu einem spontanen Zerfall des Vakuums in Paare von Materie und Antimaterie, erläutert das Forscherteam. In der aktuellen Ausgabe des renommierten Fachblattes Physical Review Letters zeigen die Physiker mit Hilfe von Computersimulationen, wie Elektronen und Positronen mit unterschiedlichen „effektiven“ Massen erzeugt werden können. „Zwar sind heutige Laser noch nicht in der Lage, ein solches Experiment durchzuführen, jedoch können wir diesen Prozess präzise in Computer-Clustern simulieren“, betont Physik-Doktorand Christian Kohlfürst. Er hat für die aktuelle Studie seine Heimat-Uni Graz gegen die Jenaer Institute eingetauscht und hier ein Auslandssemester verbracht.

In der Simulation des Vakuumzerfalls ist Einsteins berühmte Formel E=mc2 am Werk: Denn die Energie des elektrischen Feldes wird in die Masse der entstehenden Teilchen umgewandelt. Und wie die Physiker aus Jena und Graz in ihren Simulationen zeigen konnten, lasse sich die Masse der Teilchen variieren: Je stärker das simulierte elektrische Feld ist, desto schwerer sind die Zwillings-Paare aus Materie und Antimaterie, die das zerfallende Vakuum hervorbringt.

Das Forscherteam hofft nun, dass seine Simulationen in künftigen Laserexperimenten bestätigt werden. Der Gedanke, dass sogar die Massen der Elementarteilchen mit Licht gesteuert werden können, ist für die Wissenschaftler außerordentlich faszinierend. Für praktische Anwendungen im Alltag tauge diese Erkenntnis aber nicht. „Es wäre aussichtslos zu versuchen, auf diese Weise etwa den eigenen Körper zum Wunschgewicht bringen zu wollen“, so die Forscher mit einem Augenzwinkern.

Original-Publikation:
Kohlfürst C et al.: Effective mass signatures in multiphoton pair production, Physical Review Letters 2014, URLs: http://link.aps.org/doi/10.1103/PhysRevLett.112.050402 und http://arxiv.org/abs/arXiv:1310.7836, DOI: 10.1103/PhysRevLett.112.050402
Kontakt:
Prof. Dr. Holger Gies
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641 / 947190
E-Mail: Holger.Gies[at]uni-jena.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.112.050402
http://arxiv.org/abs/arXiv:1310.7836

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie