Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsteins Formel in neuem Licht

14.02.2014
Physiker der Universitäten Jena und Graz simulieren die effektive Masse von Elementarteilchen

Einsteins berühmte Formel E=mc2 beschreibt den Zusammenhang von Energie und Masse: Je massereicher ein Objekt oder Teilchen und je schneller es sich bewegt, umso größer seine Energie.

„Anders als die Geschwindigkeit ist dabei die Masse eines Körpers eine feststehende Größe, zumindest unserer Alltagserfahrung nach“, macht Prof. Dr. Holger Gies von der Friedrich-Schiller-Universität Jena und dem Helmholtz-Institut Jena deutlich. Dennoch, so der theoretische Physiker weiter, habe sich in der modernen Physik das Konzept einer „effektiven“ Masse für Elementarteilchen durchgesetzt.

Demnach kann sich die Masse eines Teilchens durch Wechselwirkung mit seiner Umgebung effektiv verändern: Beispielsweise können sich Elektronen innerhalb von Kristallen so verhalten, als hätten sie vorübergehend eine größere Masse.

„Selbst den größten Teil unseres Körpergewichts, welches von den Kernen der Atome getragen wird, können wir als kollektive Effekte von sehr viel leichteren Grundbausteinen – den Quarks – verstehen“, erklärt Prof. Dr. Reinhard Alkofer von der Uni Graz, Mit-Autor einer neuen gemeinsamen Studie und Experte für die Theorie der starken Kernkraft. Nicht zuletzt fügen sich die fundamentalen Massen der Elementarteilchen in dieses Schema ein: sie können durch Wechselwirkung mit dem umgebenden Higgs-Feld verstanden werden. Diese Erkenntnis wurde kürzlich mit dem Nobelpreis für Physik geehrt.

Um die effektive Masse auch „dingfest“ zu machen, muss sie allerdings mit einer Messgröße verknüpft werden können. Nicht immer gelingt dies den Physikern: beispielsweise wurde jahrzehntelang diskutiert, ob die effektive Masse, die der russische Physiker Volkov 1935 für das Elektron im Feld eines starken Lasers eingeführt hat, tatsächlich gemessen werden kann. Zu diesem Zweck haben die theoretischen Physiker aus Graz und Jena nun einen Effekt studiert, der besonders empfindlich von der Masse abhängt: den spontanen Zerfall des Vakuums.

In einem extrem starken elektrischen Feld, etwa erzeugt durch einen Hochintensitätslaser, komme es zu einem spontanen Zerfall des Vakuums in Paare von Materie und Antimaterie, erläutert das Forscherteam. In der aktuellen Ausgabe des renommierten Fachblattes Physical Review Letters zeigen die Physiker mit Hilfe von Computersimulationen, wie Elektronen und Positronen mit unterschiedlichen „effektiven“ Massen erzeugt werden können. „Zwar sind heutige Laser noch nicht in der Lage, ein solches Experiment durchzuführen, jedoch können wir diesen Prozess präzise in Computer-Clustern simulieren“, betont Physik-Doktorand Christian Kohlfürst. Er hat für die aktuelle Studie seine Heimat-Uni Graz gegen die Jenaer Institute eingetauscht und hier ein Auslandssemester verbracht.

In der Simulation des Vakuumzerfalls ist Einsteins berühmte Formel E=mc2 am Werk: Denn die Energie des elektrischen Feldes wird in die Masse der entstehenden Teilchen umgewandelt. Und wie die Physiker aus Jena und Graz in ihren Simulationen zeigen konnten, lasse sich die Masse der Teilchen variieren: Je stärker das simulierte elektrische Feld ist, desto schwerer sind die Zwillings-Paare aus Materie und Antimaterie, die das zerfallende Vakuum hervorbringt.

Das Forscherteam hofft nun, dass seine Simulationen in künftigen Laserexperimenten bestätigt werden. Der Gedanke, dass sogar die Massen der Elementarteilchen mit Licht gesteuert werden können, ist für die Wissenschaftler außerordentlich faszinierend. Für praktische Anwendungen im Alltag tauge diese Erkenntnis aber nicht. „Es wäre aussichtslos zu versuchen, auf diese Weise etwa den eigenen Körper zum Wunschgewicht bringen zu wollen“, so die Forscher mit einem Augenzwinkern.

Original-Publikation:
Kohlfürst C et al.: Effective mass signatures in multiphoton pair production, Physical Review Letters 2014, URLs: http://link.aps.org/doi/10.1103/PhysRevLett.112.050402 und http://arxiv.org/abs/arXiv:1310.7836, DOI: 10.1103/PhysRevLett.112.050402
Kontakt:
Prof. Dr. Holger Gies
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 1, 07743 Jena
Tel.: 03641 / 947190
E-Mail: Holger.Gies[at]uni-jena.de
Weitere Informationen:
http://link.aps.org/doi/10.1103/PhysRevLett.112.050402
http://arxiv.org/abs/arXiv:1310.7836

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Forscher verwandeln Diamant in Graphit
24.11.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen
24.11.2017 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Metamaterial mit Dreheffekt

Mit 3D-Druckern für den Mikrobereich ist es Forschern des Karlsruher Instituts für Technologie (KIT) gelungen ein Metamaterial aus würfelförmigen Bausteinen zu schaffen, das auf Druckkräfte mit einer Rotation antwortet. Üblicherweise gelingt dies nur mit Hilfe einer Übersetzung wie zum Beispiel einer Kurbelwelle. Das ausgeklügelte Design aus Streben und Ringstrukturen, sowie die zu Grunde liegende Mathematik stellen die Wissenschaftler in der aktuellen Ausgabe der renommierten Fachzeitschrift Science vor.

„Übt man Kraft von oben auf einen Materialblock aus, dann deformiert sich dieser in unterschiedlicher Weise. Er kann sich ausbuchten, zusammenstauchen oder...

Im Focus: Proton-Rekord: Magnetisches Moment mit höchster Genauigkeit gemessen

Hochpräzise Messung des g-Faktors elf Mal genauer als bisher – Ergebnisse zeigen große Übereinstimmung zwischen Protonen und Antiprotonen

Das magnetische Moment eines einzelnen Protons ist unvorstellbar klein, aber es kann dennoch gemessen werden. Vor über zehn Jahren wurde für diese Messung der...

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Reibungswärme treibt hydrothermale Aktivität auf Enceladus an

Computersimulation zeigt, wie der Eismond Wasser in einem porösen Gesteinskern aufheizt

Wärme aus der Reibung von Gestein, ausgelöst durch starke Gezeitenkräfte, könnte der „Motor“ für die hydrothermale Aktivität auf dem Saturnmond Enceladus sein....

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungen

Forschungsschwerpunkt „Smarte Systeme für Mensch und Maschine“ gegründet

24.11.2017 | Veranstaltungen

Schonender Hüftgelenkersatz bei jungen Patienten - Schlüssellochchirurgie und weniger Abrieb

24.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Mathematiker-Jahrestagung DMV + GDM: 5. bis 9. März 2018 an Uni Paderborn - Über 1.000 Teilnehmer

24.11.2017 | Veranstaltungsnachrichten

Maschinen über die eigene Handfläche steuern: Nachwuchspreis für Medieninformatik-Student

24.11.2017 | Förderungen Preise

Treibjagd in der Petrischale

24.11.2017 | Biowissenschaften Chemie