Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einsame Atome glücklich vereint

26.07.2016

Das erstaunliche Verhalten von Platin-Atomen auf Magnetitoberflächen soll bessere Katalysatoren ermöglichen. An der TU Wien konnte erklärt werden, wie sich Platin-Atome mit Hilfe von Kohlenmonoxid verbinden lassen.

Magnetit ist ein unscheinbares, dunkelgraues Material. Dass es ein Star der Oberflächenphysik ist, offenbart sich erst auf atomarer Skala: Magnetit kann Metallatome festhalten oder über seine Oberfläche wandern lassen.


Experimente in der Vakuumkammer, TU Wien.

TU Wien


Zwei Platinatome auf der Magnetitoberfläche können eine Bindung eingehen, wenn sie mit CO-Molekülen verbunden sind.

TU Wien

Manchmal ballen sich mehrere Metallatome auf der Magnetit-Oberfläche auch zu kleinen Clustern zusammen. Solche Vorgänge können die chemischen Eigenschaften des Materials maßgeblich beeinflussen: Die atomaren Prozesse auf der Magnetit-Oberfläche entscheiden, wie gut verschiedene Metallatome auf Magnetit als Katalysator für chemische Reaktionen dienen können.

An der TU Wien gelang es nun, einzelne Platin-Atome und ihr Zusammenwachsen zu winzigen Clustern zu untersuchen. Kohlenmonoxid spielt dabei eine doppelte Rolle: Es macht einzelne Platin-Atome beweglich und ermöglicht ihnen, Zweierbindungen einzugehen. Gleichzeitig stabilisiert es diese Bindungen. Nur indem man die Temperatur erhöht, wird diese Bindung wieder aufgelöst.

Einsame Atome

Es klingt ein bisschen wie eine unglückliche Liebesgeschichte: „Zwei Platin-Atome wollen eigentlich zusammen sein, aber die Magnetit-Oberfläche hindert sie daran“, erklärt Roland Bliem vom Institut für angewandte Physik der TU Wien. Gemeinsam mit Prof. Gareth Parkinson, Prof. Ulrike Diebold und anderen KollegInnen des Teams für Oberflächenphysik analysierte er das Verhalten von Platin-Atomen mit Hilfe eines Rastertunnelmikroskops.

„Wenn die Platin-Atome auf die Magnetit-Oberfläche stoßen, werden sie dort von den Sauerstoffatomen des Magnetits festgehalten – und zwar immer einzeln, eine Bindung zweier Platinatome, wie sie auf anderen Oberflächen bevorzugt vorkommen würde, erlaubt die Magnetit-Oberfläche nicht“, sagt Roland Bliem. Die Platin-Atome sitzen daher einsam an ganz bestimmten Stellen des Magnetit-Kristallgitters und können sich ohne äußere Hilfe von dort nie wieder wegbewegen.

Doch wenn man die Oberfläche in Kontakt mit ein bisschen Kohlenmonoxid bringt, ändert sich die Situation völlig: „Ein Kohlenmonoxid-Molekül kann an das Platinatom andocken, und es gewissermaßen nach oben heben“, erklärt Gareth Parkinson. „Wir nennen das den Skyhook-Effekt: Kohlenmonoxid macht das Platin-Atom mobil, plötzlich beginnt der Komplex aus Platin-Atom und Kohlenmonoxid zufällig über die Magnetit-Oberfläche zu wandern.“

Wenn das mobile Platin-Atom auf seiner Wanderung auf ein anderes mobiles Platin-Atom trifft, dann erst können die beiden eine Bindung eingehen – das funktioniert nur, wenn beide von Kohlenmonoxid-Molekülen angehoben und damit dem Zugriff der Magnetitoberfläche ein kleines bisschen entzogen werden.

Wenn die Temperatur dann auf etwa 250°C erhöht wird, trennt sich das Kohlenmonoxid wieder vom Platin-Atom, und die Bindung ist nicht länger möglich. Die Zweierbindungen brechen auf und die Platinatome lagern sich wieder einsam an unterschiedlichen Plätzen der Magnetitoberfläche an. Dieses Phänomen liefert eine Strategie, aus Clustern wieder einzelne Atome zu gewinnen– ein wichtiger Prozess auf dem Weg zu Katalysatoren, die auf einzelnen Metallatomen basieren. Manchmal bilden sich auch Cluster aus mehreren Platin-Atomen – sie bleiben auch bei erhöhter Temperatur bestehen.

Filme mit atomarer Auflösung

„In unserem Rastertunnelmikroskop bilden wir denselben Teil der Oberfläche immer wieder ab, sodass wir daraus einen Film erstellen können, der die tanzenden Atome zeigt“, sagt Roland Bliem. „Um zu verstehen, was auf dem Magnetit tatsächlich passiert, ist das ganz entscheidend: Wir können einzelnen Atomen dabei zusehen, wie sie über die Magnetitoberfläche wandern oder sich miteinander verbinden.

Hätten wir nur ein Bild vom Endresultat, könnten wir nicht genau erkennen, ob eine bestimmte Struktur aus einem, zwei oder mehreren Atomen besteht. Erst indem es uns gelingt, die Bewegungen einzelner Atome zeitlich nachzuvollziehen, können wir die Bilder richtig interpretieren.“ Bliem führte nicht nur Experimente durch, er stellte auch aufwändige theoretische Berechnungen an, um das merkwürdige Verhalten der Platinatome auf quantenphysikalischer Ebene zu erklären.

Für die chemische Katalyse spielen solche Erkenntnisse eine wichtiger Rolle: „Metalle wie Platin sind wichtige Katalysatoren“, sagt Gareth Parkinson. „Aber es kann sein, dass ein großer Cluster aus vielen Metall-Atomen ganz andere katalytische Eigenschaften hat als mehrere einzelne Metall-Atome, die getrennt voneinander auf der Oberfläche sitzen. Wenn man also optimale Katalysatoren herstellen will, dann muss man das Verhalten der Atome auf der Magnetitoberfläche verstehen und steuern können.“

Fotodownload: https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit

Roland Bliema, Jessi E. S. van der Hoevenb, Jan Hulvaa, Jiri Paveleca, Oscar Gambaa, Petra E. de Jonghb, Michael Schmida, Peter Blahac, Ulrike Diebolda, and Gareth S. Parkinson (2016). "Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface". PNAS: http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Rückfragehinweise:

Dipl.-Ing. Roland Bliem
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13466
roland.bliem@tuwien.ac.at

Gareth Parkinson, PhD
Institut für Angewandte Physik
Technische Universität Wien
Wiedner Hauptstraße 8-10, 1040 Wien
T: +43-1-58801-13473
gareth.parkinson@tuwien.ac.at

Aussender:
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Operngasse 11, 1040 Wien
T: +43-1-58801-41022
pr@tuwien.ac.at

Materials & Matter ist – neben Computational Science & Engineering, Quantum Physics & Quantum Technologies, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Geforscht wird von der Nanowelt bis hin zur Entwicklung neuer Werkstoffe für großvolumige Anwendungen. Die Forschenden arbeiten sowohl theoretisch, beispielsweise an mathematischen Modellen im Computer, wie auch experimentell an der Entwicklung und Erprobung innovativer Materialien.


TU Wien - Mitglied der TU Austria
www.tuaustria.at

Weitere Informationen:

https://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/magnetit
http://www.pnas.org/content/early/2016/07/22/1605649113.abstract

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie