Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einmaliger Einblick ins Molekül

10.06.2014

Prozesse, die auf atomarer Größenskala ablaufen, lassen sich nur mit den Gesetzen der Quantenmechanik genau beschreiben.

Physikern der Universität Würzburg ist es jetzt erstmals experimentell gelungen, den Zustand eines solchen quantenmechanischen Systems vollständig zu erfassen.


Ein Bild, das einem Schnitt durch ein Molekülorbital im Realraum gleicht, war bislang experimentell nicht zu gewinnen. Physiker der Uni Würzburg haben es jetzt möglich gemacht.

(Grafik AG Schöll)

„Es ist ein wichtiger Schritt auf dem Weg zu einem umfassenden Verständnis der natürlichen Prozesse in einer atomaren Größenordnung.“ Dieses Fazit zieht eine Gruppe Würzburger Experimentalphysiker in einer neuen Publikation, die gerade in dem renommierten Journal "Nature Communications" erschienen ist. Achim Schöll, Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg, und seine Arbeitsgruppe haben gemeinsam mit Forschern aus Jülich und Triest einen Weg entdeckt, wie sich die räumliche Verteilung von Elektronen in einem Molekül experimentell bestimmen lässt.

Die Gesetze der Quantenmechanik

„Man muss sich der Gesetze der Quantenmechanik bedienen, wenn man die Vorgänge innerhalb eines Atoms oder eines Moleküls beschreiben will“, erklärt Achim Schöll. Wer in der Schule mal gelernt hat, dass Elektronen den Atomkern auf exakten Bahnen umkreisen - wie der Mond die Erde -, kommt mit seiner Vorstellung in der quantenmechanischen Welt nicht weit. Dort werden Teilchen als komplexe Wellenfunktionen behandelt, zur Beschreibung ihrer Eigenschaften dienen die Amplitude und die Phase dieser Wellen.

Experimentell bestimmen lassen sich diese beiden Werte allerdings nur sehr schwer: „Es gehört zur Natur des Messprozesses, dass in der Regel die Information über die Phase verloren geht“, sagt Schöll. Dies liegt daran, dass in den meisten Experimenten Intensitäten gemessen werden, die dem Quadrat der Wellenfunktion und damit der Aufenthaltswahrscheinlichkeit entsprechen. Dadurch geht die Information über die Phase, das heißt das Vorzeichen dieser Funktion , verloren.

Bisherige Experimente weisen Schwachstellen auf

Aus Sicht der Experimentalphysiker ist das unbefriedigend, schließlich ist die Phase bei so fundamentalen Prozessen wie der chemischen Bindung oder der Supraleitfähigkeit der entscheidende Wert. Nach einem Weg, diesen Wert im Experiment zu bestimmen, wird deshalb seit Jahren intensiv geforscht. Zwar gibt es bereits einige wenige Methoden, die es ermöglichen, die Phase zu bestimmen. „Mit diesen lässt sich allerdings nicht gleichzeitig die räumliche Verteilung der Elektronen ermitteln“, sagt Schöll.

Das Würzburger Experiment

Dass es doch möglich ist, im Experiment zur gleichen Zeit die Phase und die Aufenthaltswahrscheinlichkeit zu bestimmen, haben Schöll und seine Mitarbeiter jetzt gezeigt. Mit Hilfe der winkelaufgelösten Photoelektronenspektroskopie und zirkular polarisiertem Licht konnten sie dies erreichen.

Bei der Photoelektronspektroskopie „beschießen“ die Physiker ihre Probe mit UV- oder Röntgenlicht, welches Elektronen aus der Oberfläche der Probe auslöst. Aus der Austrittsrichtung und der kinetischen Energie dieser Elektronen können die Wissenschaftler beispielsweise Rückschlüsse auf die chemische Zusammensetzung und die elektronische Beschaffenheit des Festkörpers ziehen. Je nach Art der Untersuchung können sie außerdem dem Lichtstrahl besondere Eigenschaften mit auf den Weg geben. „Zirkular polarisiertes Licht“ bedeutet in diesem Fall: Die Ebene, in der die Lichtwelle schwingt, dreht sich im Kreis – mal links, mal rechts herum.

Die Symmetrie liefert die gewünschte Information

„Je nachdem, ob wir unser Molekül mit rechts oder links zirkular polarisiertem Licht bestrahlen, treten unterschiedliche Intensitätsverteilungen auf“, erklärt Schöll. Die Differenz dieser beiden Intensitäten, der sogenannte zirkulare Dichroismus, zeigt dann charakteristische Symmetrien, wenn die Einstrahlrichtung des Lichtes verändert wird. Daraus lässt sich die Phase der zugrunde liegenden Wellenfunktion ableiten. Zwar ergibt dieses Experiment die Phase ebenfalls nicht direkt. „Wir können aber die Symmetrie der Phase bestimmen und damit sagen, wo der Wert positiv und wo negativ ist“, sagt der Physiker.

Kombiniert mit den Messergebnissen der Aufenthaltswahrscheinlichkeit gewinnen die Physiker somit ein Bild, das einem Schnitt durch ein Molekülorbital im Realraum gleicht. Und wer das Molekülorbital kennt, kennt gleichzeitig auch die Eigenschaften des Moleküls.

Complete determination of molecular orbitals by measurement of phase symmetry and electron density. M. Wiener, D. Hauschild, C. Sauer, V. Feyer, A. Schöll & F. Reinert. Nature Communications, Published 9 June 2014; DOI: 10.1038/ncomms5156

Kontakt

Dr. Achim Schöll, T: (0931) 31-85127; achim.schoell@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie