Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einmaliger Einblick ins Molekül

10.06.2014

Prozesse, die auf atomarer Größenskala ablaufen, lassen sich nur mit den Gesetzen der Quantenmechanik genau beschreiben.

Physikern der Universität Würzburg ist es jetzt erstmals experimentell gelungen, den Zustand eines solchen quantenmechanischen Systems vollständig zu erfassen.


Ein Bild, das einem Schnitt durch ein Molekülorbital im Realraum gleicht, war bislang experimentell nicht zu gewinnen. Physiker der Uni Würzburg haben es jetzt möglich gemacht.

(Grafik AG Schöll)

„Es ist ein wichtiger Schritt auf dem Weg zu einem umfassenden Verständnis der natürlichen Prozesse in einer atomaren Größenordnung.“ Dieses Fazit zieht eine Gruppe Würzburger Experimentalphysiker in einer neuen Publikation, die gerade in dem renommierten Journal "Nature Communications" erschienen ist. Achim Schöll, Privatdozent am Lehrstuhl für Experimentelle Physik VII der Universität Würzburg, und seine Arbeitsgruppe haben gemeinsam mit Forschern aus Jülich und Triest einen Weg entdeckt, wie sich die räumliche Verteilung von Elektronen in einem Molekül experimentell bestimmen lässt.

Die Gesetze der Quantenmechanik

„Man muss sich der Gesetze der Quantenmechanik bedienen, wenn man die Vorgänge innerhalb eines Atoms oder eines Moleküls beschreiben will“, erklärt Achim Schöll. Wer in der Schule mal gelernt hat, dass Elektronen den Atomkern auf exakten Bahnen umkreisen - wie der Mond die Erde -, kommt mit seiner Vorstellung in der quantenmechanischen Welt nicht weit. Dort werden Teilchen als komplexe Wellenfunktionen behandelt, zur Beschreibung ihrer Eigenschaften dienen die Amplitude und die Phase dieser Wellen.

Experimentell bestimmen lassen sich diese beiden Werte allerdings nur sehr schwer: „Es gehört zur Natur des Messprozesses, dass in der Regel die Information über die Phase verloren geht“, sagt Schöll. Dies liegt daran, dass in den meisten Experimenten Intensitäten gemessen werden, die dem Quadrat der Wellenfunktion und damit der Aufenthaltswahrscheinlichkeit entsprechen. Dadurch geht die Information über die Phase, das heißt das Vorzeichen dieser Funktion , verloren.

Bisherige Experimente weisen Schwachstellen auf

Aus Sicht der Experimentalphysiker ist das unbefriedigend, schließlich ist die Phase bei so fundamentalen Prozessen wie der chemischen Bindung oder der Supraleitfähigkeit der entscheidende Wert. Nach einem Weg, diesen Wert im Experiment zu bestimmen, wird deshalb seit Jahren intensiv geforscht. Zwar gibt es bereits einige wenige Methoden, die es ermöglichen, die Phase zu bestimmen. „Mit diesen lässt sich allerdings nicht gleichzeitig die räumliche Verteilung der Elektronen ermitteln“, sagt Schöll.

Das Würzburger Experiment

Dass es doch möglich ist, im Experiment zur gleichen Zeit die Phase und die Aufenthaltswahrscheinlichkeit zu bestimmen, haben Schöll und seine Mitarbeiter jetzt gezeigt. Mit Hilfe der winkelaufgelösten Photoelektronenspektroskopie und zirkular polarisiertem Licht konnten sie dies erreichen.

Bei der Photoelektronspektroskopie „beschießen“ die Physiker ihre Probe mit UV- oder Röntgenlicht, welches Elektronen aus der Oberfläche der Probe auslöst. Aus der Austrittsrichtung und der kinetischen Energie dieser Elektronen können die Wissenschaftler beispielsweise Rückschlüsse auf die chemische Zusammensetzung und die elektronische Beschaffenheit des Festkörpers ziehen. Je nach Art der Untersuchung können sie außerdem dem Lichtstrahl besondere Eigenschaften mit auf den Weg geben. „Zirkular polarisiertes Licht“ bedeutet in diesem Fall: Die Ebene, in der die Lichtwelle schwingt, dreht sich im Kreis – mal links, mal rechts herum.

Die Symmetrie liefert die gewünschte Information

„Je nachdem, ob wir unser Molekül mit rechts oder links zirkular polarisiertem Licht bestrahlen, treten unterschiedliche Intensitätsverteilungen auf“, erklärt Schöll. Die Differenz dieser beiden Intensitäten, der sogenannte zirkulare Dichroismus, zeigt dann charakteristische Symmetrien, wenn die Einstrahlrichtung des Lichtes verändert wird. Daraus lässt sich die Phase der zugrunde liegenden Wellenfunktion ableiten. Zwar ergibt dieses Experiment die Phase ebenfalls nicht direkt. „Wir können aber die Symmetrie der Phase bestimmen und damit sagen, wo der Wert positiv und wo negativ ist“, sagt der Physiker.

Kombiniert mit den Messergebnissen der Aufenthaltswahrscheinlichkeit gewinnen die Physiker somit ein Bild, das einem Schnitt durch ein Molekülorbital im Realraum gleicht. Und wer das Molekülorbital kennt, kennt gleichzeitig auch die Eigenschaften des Moleküls.

Complete determination of molecular orbitals by measurement of phase symmetry and electron density. M. Wiener, D. Hauschild, C. Sauer, V. Feyer, A. Schöll & F. Reinert. Nature Communications, Published 9 June 2014; DOI: 10.1038/ncomms5156

Kontakt

Dr. Achim Schöll, T: (0931) 31-85127; achim.schoell@physik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Charakterisierung von Graphen
30.05.2017 | Universität Basel

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode zur Charakterisierung von Graphen

Wissenschaftler haben eine neue Methode entwickelt, um die Eigenschaften von Graphen ohne das Anlegen störender elektrischer Kontakte zu charakterisieren. Damit lassen sich gleichzeitig der Widerstand und die Quantenkapazität von Graphen sowie von anderen zweidimensionalen Materialien untersuchen. Dies berichten Forscher vom Swiss Nanoscience Institute und Departement Physik der Universität Basel im Wissenschaftsjournal «Physical Review Applied».

Graphen besteht aus einer einzigen Lage von Kohlenstoffatomen. Es ist transparent, härter als Diamant, stärker als Stahl, dabei aber flexibel und ein deutlich...

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Detaillierter Blick auf molekularen Gifttransporter

Transportproteine in unseren Körperzellen schützen uns vor gewissen Vergiftungen. Forschende der ETH Zürich und der Universität Basel haben nun die hochaufgelöste dreidimensionale Struktur eines bedeutenden menschlichen Transportproteins aufgeklärt. Langfristig könnte dies helfen, neue Medikamente zu entwickeln.

Fast alle Lebewesen haben im Lauf der Evolution Mechanismen entwickelt, um Giftstoffe, die ins Innere ihrer Zellen gelangt sind, wieder loszuwerden: In der...

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wissenschaftsforum Chemie 2017

30.05.2017 | Veranstaltungen

Erfolgsfaktor Digitalisierung

30.05.2017 | Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Methode zur Charakterisierung von Graphen

30.05.2017 | Physik Astronomie

Riesenfresszellen steuern die Entwicklung von Nerven und Blutgefäßen im Gehirn

30.05.2017 | Biowissenschaften Chemie

Nano-U-Boot mit Selbstzerstörungs-Mechanismus

30.05.2017 | Biowissenschaften Chemie