Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einkristallsynthese: kostengünstig und einfach in heißer Luft

14.11.2016

Physiker der Universität Augsburg berichten mit Kollegen aus Oxford in Nature Scientific Reports über eine neue Methode zur Herstellung Lithium-basierter Übergangsmetalloxid-Kristalle.

Zur Synthese von keramischen Kristallen sind meist sehr komplizierte Verfahren notwendig. Die Ausgangsmaterialen müssen entweder in Pulverform gemischt, mehrmals gepresst und vorreagiert werden, bevor Einkristalle durch kontrolliertes Schmelzen bei hohen Temperaturen entstehen, oder das Kristallwachstum erfolgt aus Lösungen bzw. in Gasströmen während komplexer Prozesse.


Kristallzucht mit vertikal getrennten Ausgangselementen, die in Luft bei 1020°C Oxide und Hydroxide bilden. Die gewünschten Kristalle kondensieren durch Gasphasentransport am Ende der Dornenringe.

© UniversitätAugsburg/EP VI

Die Einkristallsynthese von Lithium-Iridat, das aufgrund seiner vorhergesagten außergewöhnlichen magnetischen Eigenschaften aktuell von großem Interesse ist, war bislang mit keiner der etablierten Methoden möglich.

Augsburger Physikern ist nun mit einer sehr einfachen und unkonventionellen Methode die Synthese von α-Li2IrO3 -Kristallen gelungen. Diese neue, auf isothermen Gastransport basierende Methode benötigt weder eine Durchmischung der Ausgangselemente noch besondere Vorsynthesen oder Zusätze. Sie funktioniert einfach und kostengünstig in heißer Luft.

Lithium-Iridat: ein Material mit hohem Potential

Bei der Erforschung exotischer magnetischer Grundzustände erregte Lithium-Iridat (α-Li2IrO3) in jüngster Vergangenheit große Aufmerksamkeit. Es fällt in die Klasse der sogenannten Honigwaben-Iridate, die als verheißungsvolle Kandidaten für die Realisierung einer neuartigen magnetischen Wechselwirkung – benannt nach dem Physiker Alexei Yurevich Kitaev – gelten.

Diese Kitaev-Wechselwirkung verknüpft auf einem Honigwabengitter benachbarte magnetische Momente in einer ganz speziellen Form, die für die Realisierung von topologischen Quantencomputern wichtig sein könnte. Bisher konnte α-Li2IrO3 nur als Pulver synthetisiert werden, das entsprechende Fehlen von Einkristallen verwehrte den Forschern weitere wichtige Erkenntnisse über dieses Material.

Mit der von den Augsburger Physikern um Prof. Dr. Philipp Gegenwart und Dr. Anton Jesche nun in Nature Scientific Reports beschriebenen Methode wurden erstmals solche Einkristalle hergestellt. Und darüber hat diese Methode sich inzwischen als vielseitig anwendbar erwiesen. Auch Einkristalle weiterer Verbindungen lassen sich mit ihr herstellen.

Einkristalle: Voraussetzung für tiefere Materialeinblicke

Die Verfügbarkeit von Einkristallen ist für die Materialforschung eine grundlegende Voraussetzung. Denn Einkristalle erlauben z. B. Messungen entlang spezifischer kristallographischer Achsen, wie sie bei einem Pulver nicht möglich sind. Weiterhin lassen sich Röntgenstrukturanalysen qualitativ verbessern, wenn hinreichend große Einkristalle vorliegen, und auch die Bestimmung von magnetischen Strukturen gelingt oft erst unter dieser Voraussetzung.

Überwindung der Grenzen gängiger Kristallzuchtmethoden

Um Kristalle für neue Materialien herzustellen, bedient man sich üblicherweise gängiger Kristallzuchtmethoden: Festkörperreaktionen, Schmelz- bzw. Flusszucht oder Gasphasentransport. Die Natur erschwert dies mit mancherlei Hindernissen, und diese klassischen Methoden führen nicht immer zum erwünschten Ergebnis.

„Wenn alle Versuche auf etablierten Wegen scheitern, sind neuartige unkonventionelle Ideen gefragt“, sagt Philipp Gegenwart. An seinem Augsburger Lehrstuhl für Experimentalphysik VI/EKM ist es der Nachwuchsgruppe um Anton Jesche jetzt erstmals gelungen, Einkristalle von α-Li2IrO3 mit einer völlig neuen Technik herzustellen. Die Bestätigung der mit dieser neuen Technik erreichten hervorragenden kristallinen Qualität und die Untersuchung der magnetischen Eigenschaften dieser auf neue Art erzeugten Lithium-Iridat-Einkristalle steuerte eine kooperierende Forschergruppe der Universität Oxford bei.

Die neue Methode: isothermer Gasphasentransport mit separierten Edukten

Die sogenannten Edukte, also die Ausgangsmaterialien - im Fall von α-Li2IrO3 sind dies Lithium und Iridium - liegen bei dem neuen Verfahren zunächst vertikal voneinander getrennt vor. Während des Aufheizens in Luft bilden sie Oxide und Hydroxide, die bei einer Temperatur von 1020°C durch Gasphasentransport über die ursprüngliche Trennung hinweg zueinanderfinden und miteinander reagieren.

Die aus dieser Reaktion resultierende Kristallisation findet bevorzugt an Kristallisationspunkten statt, die durch einen speziellen Aufbau vorgegeben werden (siehe Abbildung). Einzigartig bei dieser Methode ist, dass der Reaktions- bzw. Kristallisationsprozess in offener Atmosphäre an Luft und mit räumlich separierten Ausgangsmaterialien erfolgt. Ein Konzentrationsgefälle zwischen den Reaktionsgasen ermöglicht die fortlaufende Bildung der Kristalle.

„Damit unterscheidet sich unsere Technik grundlegend von der etablierten Methode des Gasphasentransports. Bei dieser Methode wird das Material in einer ganz speziellen Atmosphäre in einem abgeschlossenen Volumen durch einen Temperaturunterschied transportiert , wobei sich die Kristalle dann am kältesten Punkt des abgeschlossenen Volumens bilden“, erläutert Anton Jesche.

Bereits entziffert: die magnetische Struktur von Lithium-Iridat

Auf der Grundlage der mit der neuen Methode erzeugten Kristalle konnte mittels resonanter Röntgendiffraktometrie bereits die magnetische Struktur von α-Li2IrO3 entziffert werden, wie die Augsburger Physiker und ihre Kollegen aus Oxford in einer weiteren Veröffentlichung in Physical Review B berichten. „Außerdem“, so Gegenwart, „zeigen Messungen auch hochtinteressante Ergebnisse zur richtungsabhängigen magnetischen Anisotropie von Lithium-Iridat.“

Auch auf die Einkristallzucht verwandter Verbindungen anwendbar

Besonders hervorzuheben sei aber, dass sich mit der neuen Methode nicht nur α-Li2IrO3 Kristalle synthetisieren lassen. Gegenwart: „Nachdem wir mittlerweile auch Einkristalle verwandter Verbindungen wie der Hochtemperaturphase β-Li2IrO3 oder Li2RuO3 herstellen konnten, sind wir davon überzeugt, dass sich unsere Methode erfolgreich auf eine Vielzahl weiterer Verbindungen wird anwenden lassen.“


Publikationen:

F. Freund, S.C. Williams, R.D. Johnson, R. Coldea, P. Gegenwart, A. Jesche, Single crystal growth from separated educts and its application to lithium transition-metal oxides. Sci. Rep. 6, 35362 (2016), http://www.nature.com/articles/srep35362

S.C. Williams, R.D. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, R. Coldea. Incommensurate counterrotating magnetic order stabilized by Kitaev interactions in the layered honeycomb α-Li2IrO3. Phys. Rev. B 93, 195158 (2016), http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.195158


Kontakt:

• Prof. Dr.Philipp Gegenwart
philipp.gegenwart@physik.uni-augsburg.de

• Dr. Anton Jesche
anton.jesche@physik.uni-augsburg.de

Lehrstuhl für Experimentalphysik VI/EKM
Universität Augsburg
D-86135 Augsburg

Tel. +49(0)821-598-3651
http://www.physik.uni-augsburg.de/exp6

Weitere Informationen:

http://www.nature.com/articles/srep35362
http://journals.aps.org/prb/abstract/10.1103/PhysRevB.93.195158

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics