Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einheitliche Theorie für Skyrmionen-Materialien: Die Zähmung der magnetischen Wirbel

03.03.2015

Mit magnetischen Wirbelstrukturen, sogenannten Skyrmionen, könnte man sehr effizient Informationen speichern oder verarbeiten. Auch als Hochfrequenz-Bausteine könnten sie eingesetzt werden. Erstmals hat nun ein Team von Physikern die elektromagnetischen Eigenschaften isolierender, halbleitender und leitender skyrmionischer Materialen charakterisiert und eine einheitliche theoretische Beschreibung des Verhaltens entwickelt. Damit können in Zukunft gezielt Bausteine mit bestimmten Eigenschaften hergestellt werden.

Vor mehr als sechs Jahren entdeckten Physiker der Technischen Universität München (TUM) in einer metallischen Legierung aus Mangan und Silizium extrem stabile magnetische Wirbelstrukturen. Zusammen mit theoretischen Physikern der Universität zu Köln treiben sie seitdem diese Technologie weiter voran.


Magnetische Spin-Wellen in einem Festkörper

Illustration: Christoph Hohmann / NIM

Da die magnetischen Wirbel mikroskopisch klein sind und sich sehr leicht bewegen lassen, könnten Computerbausteine mit dieser Technologie 10.000 mal weniger Strom benötigen und wesentlich größere Datenmengen speichern als heute. Neuere Forschungsergebnisse zeigten, dass sich die einzigartigen elektromagnetischen Eigenschaften der Skyrmionen auch für den Bau effizienter und sehr kleiner Mikrowellen-Sender und –Empfänger nutzen ließe.

Leiter, Halbleiter und Isolatoren

Um Computerchips herstellen zu können braucht man isolierende, halbleitende und leitende Materialien. Für alle drei Materialklassen sind inzwischen Materialien bekannt, die magnetische Wirbelstrukturen ausbilden. Entscheidend ist aber, dass diese Wirbel schnell auf Wechselfelder reagieren, damit Informationen mit hoher Rate verarbeitet werden können. Das dynamische Verhalten der drei Materialen untersuchte nun ein Team von Physikern der TU München, der Universität zu Köln und der École Polytechnique Fédérale de Lausanne (Schweiz).

Aus den Ergebnissen ihrer Messungen entwickelte das Team eine für alle drei Materialklassen gültige theoretische Beschreibung des Verhaltens. „Mit dieser Theorie haben wir für die weitere Entwicklung ein wichtiges Fundament geschaffen“, sagt Professor Dirk Grundler, Inhaber des Lehrstuhls für Physik funktionaler Schichtsysteme an der TU München. „Damit können wir in Zukunft gezielt Materialien mit bestimmten Eigenschaften ermitteln, so wie wir sie für ein Bauelement brauchen“.

Extrem kompakte Frequenzbausteine

Die typischen Eigenfrequenzen der Skyrmionen liegen im Mikrowellen-Bereich. In diesem Frequenzbereich senden beispielsweise Handys, WLAN und viele Arten mikroelektronischer Fernsteuerungen. Dank der Robustheit der magnetischen Wirbel und ihrer leichten Anregbarkeit ließen sich mit Skyrmionen-Materialien sehr effiziente Mikrowellen-Sender und -Empfänger bauen.

Während die Wellenlänge elektromagnetischer Mikrowellen typischer Weise im Bereich von Zentimetern liegt, sind die Wellenlängen magnetischer Spin-Wellen, sogenannter Magnonen, 10.000 mal kürzer. „Aus magnetischen Nanomaterialien wie den Skyrmionen-Materialien ließen sich daher sehr viel kompaktere oder gänzlich neue Bausteine für die Mikroelektronik herstellen“, sagt Professor Dirk Grundler.

Neben dem Material ist für die elektromagnetischen Eigenschaften auch die Form des Bausteins entscheidend. Auch hier hilft die von den Wissenschaftlern entwickelte Theorie. Mit Ihr können die Forscher voraussagen, welche Form bei welchem Material die besten Eigenschaften hervorbringt.

„Chiral-magnetische Materialien versprechen viele neue Funktionalitäten mit interessantem Zusammenspiel von elektronischen und magnetischen Eigenschaften“, sagt Dr. Markus Garst, Physiker am Institut für Theoretische Physik der Universität zu Köln. „Doch für alle Anwendungen ist es unverzichtbar, die Möglichkeiten und Grenzen verschiedener Materialien vorauszusagen. Dem sind wir nun einen entscheidenden Schritt näher gekommen“.

Die Arbeiten wurden unterstützt mit Mitteln des European Research Councils (ERC Advanced Grant), der Deutschen Forschungsgemeinschaft (TRR 80, SFB 608 und Exzellenzcluster Nanosystems Initiative Munich, NIM) sowie der TUM Graduate School.

Publikation

Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets
T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, D. Grundler
nature materials, March 2, 2015 – DOI: 10.1038/nmat4223 Link: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4223.html

Video-Sequenzen (Format: avi): http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4223.html#/supplementa...

Bildmaterial: https://mediatum.ub.tum.de/?cfold=1237952&dir=1237952&id=1237952#1237952

Kontakt

Prof. Dr. Dirk Grundler
Technische Universität München
Lehrstuhl für Physik funktionaler Schichtsysteme (E10)
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12402 – Internet: http://www.e10.ph.tum.de
und
Ecole Polytechnique Fédérale de Lausanne,
Institut des Matériaux,
1015 Lausanne, Switzerland
E-Mail: dirk.grundler@epfl.ch

Prof. Dr. Christian Pfleiderer
Technische Universität München
Lehrstuhl für Topologie korrelierter Systeme
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 14720
E-Mail: christian.pfleiderer@frm2.tum.de
Internet: http://www.e21.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

nachricht Seltene Erden: Wasserabweisend erst durch Altern
22.03.2017 | Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Besser lernen dank Zink?

23.03.2017 | Biowissenschaften Chemie

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungsnachrichten

Innenraum-Ortung für dynamische Umgebungen

23.03.2017 | Architektur Bauwesen