Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einheitliche Theorie für Skyrmionen-Materialien: Die Zähmung der magnetischen Wirbel

03.03.2015

Mit magnetischen Wirbelstrukturen, sogenannten Skyrmionen, könnte man sehr effizient Informationen speichern oder verarbeiten. Auch als Hochfrequenz-Bausteine könnten sie eingesetzt werden. Erstmals hat nun ein Team von Physikern die elektromagnetischen Eigenschaften isolierender, halbleitender und leitender skyrmionischer Materialen charakterisiert und eine einheitliche theoretische Beschreibung des Verhaltens entwickelt. Damit können in Zukunft gezielt Bausteine mit bestimmten Eigenschaften hergestellt werden.

Vor mehr als sechs Jahren entdeckten Physiker der Technischen Universität München (TUM) in einer metallischen Legierung aus Mangan und Silizium extrem stabile magnetische Wirbelstrukturen. Zusammen mit theoretischen Physikern der Universität zu Köln treiben sie seitdem diese Technologie weiter voran.


Magnetische Spin-Wellen in einem Festkörper

Illustration: Christoph Hohmann / NIM

Da die magnetischen Wirbel mikroskopisch klein sind und sich sehr leicht bewegen lassen, könnten Computerbausteine mit dieser Technologie 10.000 mal weniger Strom benötigen und wesentlich größere Datenmengen speichern als heute. Neuere Forschungsergebnisse zeigten, dass sich die einzigartigen elektromagnetischen Eigenschaften der Skyrmionen auch für den Bau effizienter und sehr kleiner Mikrowellen-Sender und –Empfänger nutzen ließe.

Leiter, Halbleiter und Isolatoren

Um Computerchips herstellen zu können braucht man isolierende, halbleitende und leitende Materialien. Für alle drei Materialklassen sind inzwischen Materialien bekannt, die magnetische Wirbelstrukturen ausbilden. Entscheidend ist aber, dass diese Wirbel schnell auf Wechselfelder reagieren, damit Informationen mit hoher Rate verarbeitet werden können. Das dynamische Verhalten der drei Materialen untersuchte nun ein Team von Physikern der TU München, der Universität zu Köln und der École Polytechnique Fédérale de Lausanne (Schweiz).

Aus den Ergebnissen ihrer Messungen entwickelte das Team eine für alle drei Materialklassen gültige theoretische Beschreibung des Verhaltens. „Mit dieser Theorie haben wir für die weitere Entwicklung ein wichtiges Fundament geschaffen“, sagt Professor Dirk Grundler, Inhaber des Lehrstuhls für Physik funktionaler Schichtsysteme an der TU München. „Damit können wir in Zukunft gezielt Materialien mit bestimmten Eigenschaften ermitteln, so wie wir sie für ein Bauelement brauchen“.

Extrem kompakte Frequenzbausteine

Die typischen Eigenfrequenzen der Skyrmionen liegen im Mikrowellen-Bereich. In diesem Frequenzbereich senden beispielsweise Handys, WLAN und viele Arten mikroelektronischer Fernsteuerungen. Dank der Robustheit der magnetischen Wirbel und ihrer leichten Anregbarkeit ließen sich mit Skyrmionen-Materialien sehr effiziente Mikrowellen-Sender und -Empfänger bauen.

Während die Wellenlänge elektromagnetischer Mikrowellen typischer Weise im Bereich von Zentimetern liegt, sind die Wellenlängen magnetischer Spin-Wellen, sogenannter Magnonen, 10.000 mal kürzer. „Aus magnetischen Nanomaterialien wie den Skyrmionen-Materialien ließen sich daher sehr viel kompaktere oder gänzlich neue Bausteine für die Mikroelektronik herstellen“, sagt Professor Dirk Grundler.

Neben dem Material ist für die elektromagnetischen Eigenschaften auch die Form des Bausteins entscheidend. Auch hier hilft die von den Wissenschaftlern entwickelte Theorie. Mit Ihr können die Forscher voraussagen, welche Form bei welchem Material die besten Eigenschaften hervorbringt.

„Chiral-magnetische Materialien versprechen viele neue Funktionalitäten mit interessantem Zusammenspiel von elektronischen und magnetischen Eigenschaften“, sagt Dr. Markus Garst, Physiker am Institut für Theoretische Physik der Universität zu Köln. „Doch für alle Anwendungen ist es unverzichtbar, die Möglichkeiten und Grenzen verschiedener Materialien vorauszusagen. Dem sind wir nun einen entscheidenden Schritt näher gekommen“.

Die Arbeiten wurden unterstützt mit Mitteln des European Research Councils (ERC Advanced Grant), der Deutschen Forschungsgemeinschaft (TRR 80, SFB 608 und Exzellenzcluster Nanosystems Initiative Munich, NIM) sowie der TUM Graduate School.

Publikation

Universal helimagnon and skyrmion excitations in metallic, semiconducting and insulating chiral magnets
T. Schwarze, J. Waizner, M. Garst, A. Bauer, I. Stasinopoulos, H. Berger, C. Pfleiderer, D. Grundler
nature materials, March 2, 2015 – DOI: 10.1038/nmat4223 Link: http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4223.html

Video-Sequenzen (Format: avi): http://www.nature.com/nmat/journal/vaop/ncurrent/full/nmat4223.html#/supplementa...

Bildmaterial: https://mediatum.ub.tum.de/?cfold=1237952&dir=1237952&id=1237952#1237952

Kontakt

Prof. Dr. Dirk Grundler
Technische Universität München
Lehrstuhl für Physik funktionaler Schichtsysteme (E10)
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 12402 – Internet: http://www.e10.ph.tum.de
und
Ecole Polytechnique Fédérale de Lausanne,
Institut des Matériaux,
1015 Lausanne, Switzerland
E-Mail: dirk.grundler@epfl.ch

Prof. Dr. Christian Pfleiderer
Technische Universität München
Lehrstuhl für Topologie korrelierter Systeme
James-Franck-Str. 1, 85748 Garching, Germany
Tel.: +49 89 289 14720
E-Mail: christian.pfleiderer@frm2.tum.de
Internet: http://www.e21.ph.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultra-sensitiv dank quantenmechanischer Verschränkung
28.06.2017 | Universität Stuttgart

nachricht Forscher sorgen mit ungewöhnlicher Studie über Edelgase international für Aufmerksamkeit
26.06.2017 | Universität Bremen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Schnelles und umweltschonendes Laserstrukturieren von Werkzeugen zur Folienherstellung

Kosteneffizienz und hohe Produktivität ohne dabei die Umwelt zu belasten: Im EU-Projekt »PoLaRoll« entwickelt das Fraunhofer-Institut für Produktionstechnologie IPT aus Aachen gemeinsam mit dem Oberhausener Fraunhofer-Institut für Umwelt-, Sicherheit- und Energietechnik UMSICHT und sechs Industriepartnern ein Modul zur direkten Laser-Mikrostrukturierung in einem Rolle-zu-Rolle-Verfahren. Ziel ist es, mit Hilfe dieses Systems eine siebartige Metallfolie als Demonstrator zu fertigen, die zum Sonnenschutz von Glasfassaden verwendet wird: Durch ihre besondere Geometrie wird die Sonneneinstrahlung reduziert, woraus sich ein verminderter Energieaufwand für Kühlung und Belüftung ergibt.

Das Fraunhofer IPT ist im Projekt »PoLaRoll« für die Prozessentwicklung der Laserstrukturierung sowie für die Mess- und Systemtechnik zuständig. Von den...

Im Focus: Das Auto lernt vorauszudenken

Ein neues Christian Doppler Labor an der TU Wien beschäftigt sich mit der Regelung und Überwachung von Antriebssystemen – mit Unterstützung des Wissenschaftsministeriums und von AVL List.

Wer ein Auto fährt, trifft ständig Entscheidungen: Man gibt Gas, bremst und dreht am Lenkrad. Doch zusätzlich muss auch das Fahrzeug selbst ununterbrochen...

Im Focus: Vorbild Delfinhaut: Elastisches Material vermindert Reibungswiderstand bei Schiffen

Für eine elegante und ökonomische Fortbewegung im Wasser geben Delfine den Wissenschaftlern ein exzellentes Vorbild. Die flinken Säuger erzielen erstaunliche Schwimmleistungen, deren Ursachen einerseits in der Körperform und andererseits in den elastischen Eigenschaften ihrer Haut zu finden sind. Letzteres Phänomen ist bereits seit Mitte des vorigen Jahrhunderts bekannt, konnte aber bislang nicht erfolgreich auf technische Anwendungen übertragen werden. Experten des Fraunhofer IFAM und der HSVA GmbH haben nun gemeinsam mit zwei weiteren Forschungspartnern eine Oberflächenbeschichtung entwickelt, die ähnlich wie die Delfinhaut den Strömungswiderstand im Wasser messbar verringert.

Delfine haben eine glatte Haut mit einer darunter liegenden dicken, nachgiebigen Speckschicht. Diese speziellen Hauteigenschaften führen zu einer signifikanten...

Im Focus: Kaltes Wasser: Und es bewegt sich doch!

Bei minus 150 Grad Celsius flüssiges Wasser beobachten, das beherrschen Chemiker der Universität Innsbruck. Nun haben sie gemeinsam mit Forschern in Schweden und Deutschland experimentell nachgewiesen, dass zwei unterschiedliche Formen von Wasser existieren, die sich in Struktur und Dichte stark unterscheiden.

Die Wissenschaft sucht seit langem nach dem Grund, warum ausgerechnet Wasser das Molekül des Lebens ist. Mit ausgefeilten Techniken gelingt es Forschern am...

Im Focus: Hyperspektrale Bildgebung zur 100%-Inspektion von Oberflächen und Schichten

„Mehr sehen, als das Auge erlaubt“, das ist ein Anspruch, dem die Hyperspektrale Bildgebung (HSI) gerecht wird. Die neue Kameratechnologie ermöglicht, Licht nicht nur ortsaufgelöst, sondern simultan auch spektral aufgelöst aufzuzeichnen. Das bedeutet, dass zur Informationsgewinnung nicht nur herkömmlich drei spektrale Bänder (RGB), sondern bis zu eintausend genutzt werden.

Das Fraunhofer IWS Dresden entwickelt eine integrierte HSI-Lösung, die das Potenzial der HSI-Technologie in zuverlässige Hard- und Software überführt und für...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Willkommen an Bord!

28.06.2017 | Veranstaltungen

Internationale Fachkonferenz IEEE ICDCM - Lokale Gleichstromnetze bereichern die Energieversorgung

27.06.2017 | Veranstaltungen

Internationale Konferenz zu aktuellen Fragen der Stammzellforschung

27.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Willkommen an Bord!

28.06.2017 | Veranstaltungsnachrichten

Fraunhofer-Forscher entwickeln Hochdrucksensoren für Extremtemperaturen

28.06.2017 | Energie und Elektrotechnik

Zeolith-Katalysatoren ebnen den Weg für dezentrale chemische Prozesse: Biosprit aus Abfällen

28.06.2017 | Verfahrenstechnologie