Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eingebaute Germanium-Laser könnten Computer-Chips schneller machen

10.09.2012
Forscher des Paul Scherrer Instituts haben untersucht, wie man das Halbleitermaterial Germanium dazu bringen könnte, Laserlicht auszusenden.

Als Lasermaterial könnte Germanium mit Silizium die Grundlage für neuartige Computerchips bilden, in denen Informationen zum Teil in Form von Licht übertragen würden.

Diese Technologie würde es ermöglichen, den Datenfluss auf Chips zu revolutionieren und so die Leistung der Elektronik weiter voranzutreiben. Die Forscher haben gezeigt, dass man Germanium mit einer äusseren Kraft verformen muss, damit es zu einem Lasermaterial wird.

Im Jahr 1965 hat Gordon Moore die Regel aufgestellt, dass sich die Flächendichte von Transistoren auf Computerchips – und damit die Rechenleistung – etwa alle zwei Jahre verdoppelt. Das Gesetz gilt seit dem Beginn der digitalen Zeitrechnung, also seit Einführung der ersten integrierten Schaltkreise für Mikro-Prozessoren im Jahr 1960. Trotz der steigenden Anzahl Transistoren in Computerchips und weiterer Fortschritte kann die Gesamtleistung der Prozessoren dem Moore'schen Gesetz seit etwa einer Dekade nicht mehr folgen – Fachleute sprechen vom Moore’schen Gap (Lücke). Grund ist, dass die modernen Chips mehrere Kerne – eigenständige Prozessoren – haben, die mit herkömmlichen Verfahren nur relativ langsam miteinander kommunizieren.

„Tatsächlich kennt man einen Weg, wie diese Lücke geschlossen werden kann: das Zauberwort heisst optische Datenübertragung zwischen den verschiedenen Kernen auf dem Chip“, erklärt Hans Sigg, Forscher am Paul Scherrer Institut. „Das heisst, man würde die Information innerhalb eines Computerchips teilweise mithilfe von Lichtpulsen übertragen, was den Informationsfluss stark beschleunigen könnte.“ Dafür bräuchte man winzige Laser, die man in Chips einbauen könnte und die dort Lichtpulse aussenden würden. Diese sind aber bislang nicht verfügbar.

Winzige Germanium-Laser sollen Chips schneller machen

Nun konnte Siggs Forschungsteam zusammen mit Kollegen der ETH Zürich und des Politecnico di Milano zeigen, dass Germanium unter bestimmten Bedingungen als Lasermaterial dienen könnte. „Germaniumlaser könnten hier den Durchbruch bringen, weil Germanium sich gut mit Silizium kombinieren lässt, aus dem die Chips gebaut sind. Silizium selbst kann kein Licht aussenden, und es lässt sich kaum mit verfügbaren Lasermaterialien kombinieren“, betont Sigg.
In ihren Untersuchungen haben die Forschenden die Eigenschaften des Germaniums untersucht, die für die Erzeugung von Laserlicht wichtig sind und sie mit denen herkömmlicher Lasermaterialien verglichen. Die Experimente haben sie an der Synchrotron Lichtquelle Schweiz des Paul Scherrer Instituts durchgeführt. „Wir regen mit einem starken Laser das Material an und können gleichzeitig die Veränderungen mithilfe von Infrarotlicht aus der SLS beobachten“, erläutert der Doktorand Peter Friedli, der die entscheidenden Experimente zusammen mit dem Forscher Lee Carroll, durchgeführt hat. „Dabei nutzen wir aus, dass diese Lichtpulse nur 100 Picosekunden, also 0,1 Milliardstelsekunden lang sind, und wir deshalb die relevanten Vorgänge im Material, also das Verhalten der Elektronen zu verschiedenen Zeitpunkten, verfolgen können.“

Germanium muss verspannt sein
„Unsere Ergebnisse, sind einerseits ermutigend: Germanium verhält sich ähnlich wie traditionelle Lasermaterialien – damit ist die Möglichkeit von Lichtemission nicht ausgeschlossen“, sagt Sigg erfreut, schränkt jedoch ein: „Die Balance zwischen Verstärkung und Verlust ist in den bislang untersuchten Germanium-Schichten noch so ungünstig, dass das Material die Bedingung für die Erzeugung von Laserlicht noch nicht erfüllt.“ Dabei hat sich aber gezeigt, dass man dieser Bedingung umso näher kommt, je stärker man das Germanium mit einer äusseren Kraft verformt. Die Forscher hoffen, in einem Folgeprojekt die nötigen Bedingungen für das Germanium zu erreichen. Dazu werden sie eine neue Technologie nutzen, die es erlaubt, diese Verspannungen stark zu erhöhen.

Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds SNF gefördert.

Text: Paul Piwnicki

Über das PSI
Das Paul Scherrer Institut entwickelt, baut und betreibt grosse und komplexe Forschungsanlagen und stellt sie der nationalen und internationalen Forschungsgemeinde zur Verfügung. Eigene Forschungsschwerpunkte sind Materie und Material, Mensch und Gesundheit, sowie Energie und Umwelt. Mit 1500 Mitarbeitenden und einem Jahresbudget von rund 300 Mio. CHF ist es das grösste Forschungsinstitut der Schweiz.

Kontakt: Dr. Hans Sigg, Labor für Mikro- und Nanotechnologie; Paul Scherrer Institut, 5232 Villigen PSI, Schweiz; +41 56 310 40 48, hans.sigg@psi.ch
Originalveröffentlichung:
Direct-Gap Gain and Optical Absorption in Germanium Correlated to the Density of Photoexcited Carriers, Doping, and Strain
Lee Carroll, Peter Friedli, Stefan Neuenschwander, Hans Sigg, Stefano Cecchi, Fabio Isa, Daniel Chrastina, Giovanni Isella, Yuriy Fedoryshyn, Jérôme Faist
Phys. Rev. Lett. 109, 057402 (2012); DOI: 10.1103/PhysRevLett.109.057402 http://dx.doi.org/10.1103/PhysRevLett.109.057402

Hintergrundartikel zur verwendeten Methode:
Ultra-broadband infrared pump-probe spectroscopy using synchrotron radiation and a tuneable pump
Lee Carroll, Peter Friedli, Philippe Lerch, Jörg Schneider, Daniel Treyer, Stephan Hunziker, Stefan Stutz, and Hans Sigg

Rev. Sci. Instrum. 82, 063101 (2011); DOI: 10.1063/1.3592332 http://dx.doi.org/10.1063/1.3592332

Dagmar Baroke | Paul Scherrer Institut (PSI)
Weitere Informationen:
http://www.psi.ch
http://www.psi.ch/media/eingebaute-germanium-laser-koennten-computer-chips-schneller-machen

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Speicherdauer von Qubits für Quantencomputer weiter verbessert
09.12.2016 | Forschungszentrum Jülich

nachricht Elektronenautobahn im Kristall
09.12.2016 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie