Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfache Struktur komplexer Kerne - Laserspektroskopie an Cadmium-Isotopen bestätigt Schalenmodell

13.05.2013
Atomkerne sind so komplexe Quantensysteme, dass auch nach über 70 Jahren Forschung ihre Struktur noch nicht in allen Details verstanden ist.

Eine europäische Physikergruppe um Deyan Yordanov vom MPI für Kernphysik hat nun mit laserspektroskopischen Messungen an Cadmium-Isotopen bei ISOLDE-CERN ein grundlegendes Modell der Kernstruktur und ein überraschend einfaches Prinzip bestätigt, das allerdings nur unter bestimmten Bedingungen erwartet worden war.


Das UV-Licht zur Anregung der Cadmium-Ionen wird durch zweimalige Frequenzverdopplung eines auf 860 nm abgestimmten Titan:Saphir-Lasers erzeugt.
Grafik: MPI für Kernphysik


Die Quadrupolmomente (Q; mb = millibarn = 10^-27 cm^2) von Cadmium-Isotopen mit ungerader Neutronenzahl im Kernzustand mit Spin 11/2 steigen linear an.
Grafik: MPI für Kernphysik

Magnetische Dipol- und elektrische Quadrupolmomente sind fundamentale Eigenschaften von Quantensystemen, die sich für anspruchsvolle Tests von Modellen besonders eignen. So führten verfügbare Daten kernmagnetischer Momente in den 1940er Jahren zur Entwicklung des Schalenmodells der Kernstruktur und später Kernquadrupolmomente zum Konzept deformierter Kerne.

Die Natur stellt zwar einige hundert stabile Kerne zur Verfügung, aber diese verteilen sich über fast das gesamte Periodensystem. Besser geeignet für präzise Messungen sind viele unterschiedlich schwere Kerne ein- und desselben Elements, genannt Isotope. Sie besitzen die gleiche Anzahl von Protonen (die das chemische Element bestimmt), aber unterschiedlich viele Neutronen. In modernen Beschleunigeranlagen können durch Beschuss schwerer Kerne mit Protonen ganze Serien von Isotopen künstlich hergestellt werden. Dabei ist es aber eine Herausforderung, das gewünschte Isotop aus den rund 1000 verschiedenen Bruchstücken herauszufischen.

An der ISOLDE-Anlage des CERN haben sich die Physiker einiger Tricks bedient: Mit hochenergetischen Protonen beschossen sie zunächst Wolfram, um mittel- und niedrigenergetische Neutronen in großer Zahl zu produzieren, und damit Urankerne gespalten. Auf diese Weise entstehen ‚nur‘ einige hundert verschiedene, meist – wie gewünscht – neutronenreiche Kerne. Aus dieser Mischung verschiedener Elemente haben die Wissenschaftler die flüchtigen Cadmium-Atome bei kontrollierter Temperatur über ein Quarzrohr selektiv abgedampft und zum Experiment geführt, während die restlichen Nuklide am Target zurückblieben und dort zerfielen.

Die Cadmium-Atome wurden anschließend mit einem Laser ionisiert, beschleunigt und nach ihrer Masse getrennt. Der aus jeweils nur einem Isotop bestehende Ionenstrahl wurde in eine sogenannte Paulfalle injiziert, kurz gespeichert und dann als komprimiertes Bündel emittiert. Damit unterdrückten die Forscher den Untergrund und erhöhten die Empfindlichkeit der folgenden Messungen mittels hochauflösender Laserspektroskopie. Zur Anregung der Cadmium-Ionen im tiefen UV kam ein frequenzvervierfachter Titan:Saphir-Laser zum Einsatz. Die Spektren zeigen für jedes Isotop eine charakteristische Hyperfeinstruktur, aus der sich die Kerndipol- und Quadrupolmomente sowie der quantenmechanische Kernzustand bestimmen lassen.

Bemerkenswerterweise nehmen die Quadrupolmomente der Cadmium-Isotope 111 bis 129 mit ungerader Massen- und damit auch Neutronenzahl in einem bestimmten Kernzustand linear mit der Neutronenzahl zu. Dieser Kernzustand kann im quantenmechanischen Schalenmodell der Kernstruktur als ein ungepaartes Neutron in einem Orbital mit hohem Bahndrehimpuls betrachtet werden. Und dieses ungepaarte Neutron verhält sich in allen Kernen gleichartig. Ein derartiges Verhalten war theoretisch vorhergesagt, allerdings nur für Kerne, in denen entweder die Neutronen oder die Protonen eine abgeschlossene Schale bilden. In den verschiedenen Cadmium-Isotopen, deren Schalen alle nicht abgeschlossen sind, ist diese einfache Konfiguration aber offensichtlich erhalten. Somit bestätigen die Ergebnisse das Schalenmodell und das Konzept der Paarung von Protonen und Neutronen, das für eine einfache und gleichbleibende Struktur in einer langen Reihe von Isotopen sorgt.

Originalpublikation:
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
D. T. Yordanov, D. L. Balabanski, J. Bieron, M. L. Bissell, K. Blaum, I. Budincevic, S. Fritzsche, N. Frömmgen, G. Georgiev, Ch. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, W. Nörtershäuser, J. Papuga, S. Schmidt
Phys. Rev. Lett. 110, 192501 (2013), DOI:10.1103/PhysRevLett.110.192501 http://link.aps.org/doi/10.1103/PhysRevLett.110.192501

Viewpoint:
Simple Structure in Complex Nuclei
J. Wood, Physics 6, 52 (2013), DOI: 10.1103/Physics.6.52 http://physics.aps.org/articles/v6/52
Kontakt:

Prof. Dr. Klaus Blaum
MPI für Kernphysik, Heidelberg
E-Mail: klaus.blaum [AT] mpi-hd.mpg.de
Tel.: +49 6221 516-850

Prof. Dr. Wilfried Nörterhäuser
Technische Universität Darmstadt
E-Mail: wnoertershaeuser [AT] ikp.tu-darmstadt.de
Tel.: +49 6151 16-3116

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://physics.aps.org/articles/v6/52

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

»Laser in Composites Symposium« in Aachen – von der Wissenschaft in die Anwendung

19.09.2017 | Veranstaltungsnachrichten

Zentraler Schalter der Immunabwehr gefunden

19.09.2017 | Biowissenschaften Chemie

Neue Materialchemie für Hochleistungsbatterien

19.09.2017 | Biowissenschaften Chemie