Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einfache Struktur komplexer Kerne - Laserspektroskopie an Cadmium-Isotopen bestätigt Schalenmodell

13.05.2013
Atomkerne sind so komplexe Quantensysteme, dass auch nach über 70 Jahren Forschung ihre Struktur noch nicht in allen Details verstanden ist.

Eine europäische Physikergruppe um Deyan Yordanov vom MPI für Kernphysik hat nun mit laserspektroskopischen Messungen an Cadmium-Isotopen bei ISOLDE-CERN ein grundlegendes Modell der Kernstruktur und ein überraschend einfaches Prinzip bestätigt, das allerdings nur unter bestimmten Bedingungen erwartet worden war.


Das UV-Licht zur Anregung der Cadmium-Ionen wird durch zweimalige Frequenzverdopplung eines auf 860 nm abgestimmten Titan:Saphir-Lasers erzeugt.
Grafik: MPI für Kernphysik


Die Quadrupolmomente (Q; mb = millibarn = 10^-27 cm^2) von Cadmium-Isotopen mit ungerader Neutronenzahl im Kernzustand mit Spin 11/2 steigen linear an.
Grafik: MPI für Kernphysik

Magnetische Dipol- und elektrische Quadrupolmomente sind fundamentale Eigenschaften von Quantensystemen, die sich für anspruchsvolle Tests von Modellen besonders eignen. So führten verfügbare Daten kernmagnetischer Momente in den 1940er Jahren zur Entwicklung des Schalenmodells der Kernstruktur und später Kernquadrupolmomente zum Konzept deformierter Kerne.

Die Natur stellt zwar einige hundert stabile Kerne zur Verfügung, aber diese verteilen sich über fast das gesamte Periodensystem. Besser geeignet für präzise Messungen sind viele unterschiedlich schwere Kerne ein- und desselben Elements, genannt Isotope. Sie besitzen die gleiche Anzahl von Protonen (die das chemische Element bestimmt), aber unterschiedlich viele Neutronen. In modernen Beschleunigeranlagen können durch Beschuss schwerer Kerne mit Protonen ganze Serien von Isotopen künstlich hergestellt werden. Dabei ist es aber eine Herausforderung, das gewünschte Isotop aus den rund 1000 verschiedenen Bruchstücken herauszufischen.

An der ISOLDE-Anlage des CERN haben sich die Physiker einiger Tricks bedient: Mit hochenergetischen Protonen beschossen sie zunächst Wolfram, um mittel- und niedrigenergetische Neutronen in großer Zahl zu produzieren, und damit Urankerne gespalten. Auf diese Weise entstehen ‚nur‘ einige hundert verschiedene, meist – wie gewünscht – neutronenreiche Kerne. Aus dieser Mischung verschiedener Elemente haben die Wissenschaftler die flüchtigen Cadmium-Atome bei kontrollierter Temperatur über ein Quarzrohr selektiv abgedampft und zum Experiment geführt, während die restlichen Nuklide am Target zurückblieben und dort zerfielen.

Die Cadmium-Atome wurden anschließend mit einem Laser ionisiert, beschleunigt und nach ihrer Masse getrennt. Der aus jeweils nur einem Isotop bestehende Ionenstrahl wurde in eine sogenannte Paulfalle injiziert, kurz gespeichert und dann als komprimiertes Bündel emittiert. Damit unterdrückten die Forscher den Untergrund und erhöhten die Empfindlichkeit der folgenden Messungen mittels hochauflösender Laserspektroskopie. Zur Anregung der Cadmium-Ionen im tiefen UV kam ein frequenzvervierfachter Titan:Saphir-Laser zum Einsatz. Die Spektren zeigen für jedes Isotop eine charakteristische Hyperfeinstruktur, aus der sich die Kerndipol- und Quadrupolmomente sowie der quantenmechanische Kernzustand bestimmen lassen.

Bemerkenswerterweise nehmen die Quadrupolmomente der Cadmium-Isotope 111 bis 129 mit ungerader Massen- und damit auch Neutronenzahl in einem bestimmten Kernzustand linear mit der Neutronenzahl zu. Dieser Kernzustand kann im quantenmechanischen Schalenmodell der Kernstruktur als ein ungepaartes Neutron in einem Orbital mit hohem Bahndrehimpuls betrachtet werden. Und dieses ungepaarte Neutron verhält sich in allen Kernen gleichartig. Ein derartiges Verhalten war theoretisch vorhergesagt, allerdings nur für Kerne, in denen entweder die Neutronen oder die Protonen eine abgeschlossene Schale bilden. In den verschiedenen Cadmium-Isotopen, deren Schalen alle nicht abgeschlossen sind, ist diese einfache Konfiguration aber offensichtlich erhalten. Somit bestätigen die Ergebnisse das Schalenmodell und das Konzept der Paarung von Protonen und Neutronen, das für eine einfache und gleichbleibende Struktur in einer langen Reihe von Isotopen sorgt.

Originalpublikation:
Spins, Electromagnetic Moments, and Isomers of 107-129Cd
D. T. Yordanov, D. L. Balabanski, J. Bieron, M. L. Bissell, K. Blaum, I. Budincevic, S. Fritzsche, N. Frömmgen, G. Georgiev, Ch. Geppert, M. Hammen, M. Kowalska, K. Kreim, A. Krieger, R. Neugart, W. Nörtershäuser, J. Papuga, S. Schmidt
Phys. Rev. Lett. 110, 192501 (2013), DOI:10.1103/PhysRevLett.110.192501 http://link.aps.org/doi/10.1103/PhysRevLett.110.192501

Viewpoint:
Simple Structure in Complex Nuclei
J. Wood, Physics 6, 52 (2013), DOI: 10.1103/Physics.6.52 http://physics.aps.org/articles/v6/52
Kontakt:

Prof. Dr. Klaus Blaum
MPI für Kernphysik, Heidelberg
E-Mail: klaus.blaum [AT] mpi-hd.mpg.de
Tel.: +49 6221 516-850

Prof. Dr. Wilfried Nörterhäuser
Technische Universität Darmstadt
E-Mail: wnoertershaeuser [AT] ikp.tu-darmstadt.de
Tel.: +49 6151 16-3116

Dr. Bernold Feuerstein | Max-Planck-Institut
Weitere Informationen:
http://www.mpi-hd.mpg.de
http://physics.aps.org/articles/v6/52

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte