Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Unschärferelation in der Quanteninformationstheorie

14.07.2015

Physiker am Atominstitut der TU Wien bestätigen eine Unschärferelation beim Informationsaustausch zwischen zwei Quantenmessungen.

Information ist eine Kerngröße in der Wissenschaft und spielt eine bedeutende Rolle in vielen Wirtschaftszweigen wie der Kommunikationstechnologie, der Kryptographie oder der Datenspeicherung. Auch in der Quantenkommunikations und -informationstechnologie erforscht man die Übertragung und Verschlüsselung von Informationen, wo jedoch entsprechende Quantenphänomene wie die Unschärferelation mitberücksichtigt werden müssen.


Versuchsreaktor am Atominstitut

TU Wien


Konzeption des Experiments

TU Wien

Experimente an der TU Wien in Zusammenarbeit mit Theoretikern aus Australien und Japan werfen nun einen neueren, genaueren Blick auf die Unschärferelation im Bezug zur Informationstheorie. Grundlagen der Quantenphysik konnten mit den Erkenntnissen aus der Informationstheorie beschrieben werden.

Heisenbergs Unschärferelation ist eine der fundamentalsten Aussagen der Quantenphysik. Sie sagt, dass bestimmte Eigenschaften von Quantenteilchen, etwa Ort und Impuls, nicht gleichzeitig mit beliebiger Genauigkeit bestimmt werden können. Ein Teilchen kann sich an unterschiedlichen Orten gleichzeitig aufhalten und unterschiedliche Geschwindigkeiten gleichzeitig annehmen.

Die Frage, wo und wie schnell sich das Teilchen nun „wirklich“ bewegt, ist sinnlos – die Natur enthält einfach keine Information darüber, man könnte sagen, das Teilchen weiß es selbst nicht. Historisch wurde die Unschärferelation allerdings durch Bezug auf ein Mikroskop-Gedankenexperimente erklärt: Jede Messung hat zwangsläufig einen Einfluss auf das gemessene Objekt. Wenn man beispielsweise den Aufenthaltsort eines Elektrons mit Hilfe von Lichtwellen sehr genau messen will, dann muss man dazu sehr kurze Lichtwellen verwenden. Kurzwelliges Licht hat allerdings sehr viel Energie, wodurch der Impuls des Teilchens stark verändert wird.

Je genauer man den Ort messen möchte, umso stärker stört man durch das Experiment den Impuls. „Unglücklicherweise werden diese beiden Darstellungen der Unschärferelation im physikalischen Alltag, aber auch in Lehrbüchern, oft miteinander verwechselt, obwohl sie vollkommen verschiedene physikalische Umstände beschreiben“, sagt Stephan Sponar vom Atominstitut der TU Wien.

Letztes Jahr haben Physiker in Australien und Japan mithilfe der sogenannten Entropie die Unschärfe zwischen „Informationsgehalt“ und „Vorhersagbarkeit“ genauer analysiert und eine trade-off Relation aufgestellt. Diese Konzepte spielen eine zentrale Rolle in der Kommunikationstheorie, den Ingenieurwissenschaften und der Informatik. „Daher ist es vollkommen natürlich, eine Formulierung der Heisenbergschen Unschärferelation zu finden, die auf Grundlagen der Informationstheorie beruht“, sagt Bülent Demirel, ebefalls vom Atominstitut der TU Wien.

Bei den Forschungen rund um Prof Hasegawa von der TU Wien wurde diese neue Theorie mittels neutronenoptischer Methode am Forschungsreaktor am Atominstitut Wien getestet. Für das Experiment wurde der Spin von Neutronen, wie sie bei der Kernspaltung produziert werden, durch aufeinander folgende Messungen bestimmt. Anders als in der klassischen Informatik, wo klassische Bits nur die Werte 0 oder 1 haben können, kann der Spin ein sogenanntes Quantenbit (qubits) an Informationen darstellen. Für Spin-Messungen gilt eine Unschärferelation, genau wie für Ort und Impuls. Man kann nicht gleichzeitig den Spin in X-Richtung und in Y-Richtung präzise messen. Somit kann man die Neutronenspins als Träger des qubits ansehen und damit die informations-theoretische Unschärferelation testen.

Es gelang, eine reziproke Relation für Informationsgehalt und Vorhersagbarkeit herzuleiten. Je höher der Informationsgehalt durch die Messung des qubits erworben wurde, umso geringer war die Vorhersagbarkeit dessen, wie der Wert zustande gekommen ist und umgekehrt. Zwischen Informationsgehalt und Vorhersagbarkeit bildet sich ein verbotener Bereich aus, welcher ausdrückt, dass Information nicht gleichzeitig durch beide Messungen beliebig genau gewonnen werden kann. Desweitern wurden Protokolle zur Quanten-Fehlerkorrektur angewandt, um zu ermitteln, wie viel Information reversibel ist und daher erhalten werden kann, und wie viel Information durch Messung unweigerlich zerstört wird. Die Richtigkeit der postulierten Relation zwischen Informationsgehalt und Vorhersagbarkeit konnte mit höchster Präzision eindeutig nachgewiesen werden. Diese Formulierung wird vom Forschungsteam nun im Fachjournal „Physical Review Letters“ präsentiert und ist als „Editor’s Suggestion“ auserkoren worden.

Die neuen Ergebnisse quantifizieren die Grenzen der Übertragung von Information über Quantenkanäle und haben somit eine hohe Bedeutung in weiten Bereichen der Quanteninformationstechnologie. Verrauschte Kanäle, Informationsverlust entlang von Leitungen, aber auch die Quantenverschlüsselung von Daten können somit besser verstanden werden.

Rückfragehinweis:
Associate Prof. Dipl.-Ing. Dr. Yuji HASEGAWA
Atominstitut
Technische Universität Wien
+43-1-58801-141490
hasegawa@ati.ac.at

Quantum Physics & Quantum Technologies ist – neben Computational Science & Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.

TU Wien - Mitglied der TU Austria
www.tuaustria.at

Weitere Informationen:

http://Originalpublikation: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.115.030401

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Revolution der Rohre

Forscher*innen des Instituts für Sensor- und Aktortechnik (ISAT) der Hochschule Coburg lassen Rohrleitungen, Schläuchen oder Behältern in Zukunft regelrecht Ohren wachsen. Sie entwickelten ein innovatives akustisches Messverfahren, um Ablagerungen in Rohren frühzeitig zu erkennen.

Rückstände in Abflussleitungen führen meist zu unerfreulichen Folgen. Ein besonderes Gefährdungspotential birgt der Biofilm – eine Schleimschicht, in der...

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungsnachrichten

Breitbandservices von DNS:NET erweitert

20.06.2018 | Unternehmensmeldung

Mit Parasiten infizierte Stichlinge beeinflussen Verhalten gesunder Artgenossen

20.06.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics