Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Liga für Terahertz-Lichtquellen

07.03.2016

Terahertz-Strahlung ist unsichtbar und für den Menschen ungefährlich. Sie ist besonders gut geeignet, moderne Materialien oder komplexe biologische Vorgänge zu untersuchen. Am Elektronenbeschleuniger ELBE des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben Wissenschaftler nun eine Prototyp-Anlage für die Forschung mit starken Terahertz-Feldern aufgebaut. Die Anlage mit dem Namen TELBE erzeugt starke Lichtpulse bei gleichzeitig unerreicht hoher Wiederholrate, erlaubt also um Größenordnungen mehr Messungen pro Sekunde als an existierenden Quellen. In der Zeitschrift „Scientific Reports“ berichten die Forscher über eine erste Serie erfolgreicher Experimente.

Mit Wellenlängen zwischen 0,03 und drei Millimetern handelt es sich bei Terahertz-Licht um Wärmestrahlung im fernen und mittleren Infrarot-Bereich. Wie jede Strahlung im elektromagnetischen Spektrum, besteht auch Terahertz-Strahlung aus gekoppelten elektrischen und magnetischen Feldern.


An der Prototyp-Anlage TELBE am ELBE-Zentrum für Hochleistungs-Strahlenquellen des HZDR werden zwei Terahertz-Quellen parallel betrieben: ein Diffraktionsstrahler (rechts) und eine Undulator-Quelle.

HZDR/F. Bierstedt

Seit einigen Jahren werden starke Laserpulse im Terahertz-Regime erfolgreich an sogenannten Hochfeld-Terahertz-Quellen erzeugt. Damit sind neuartige Experimente mit besonders hohen magnetischen und elektrischen Feldstärken der Terahertz-Strahlung möglich.

In den Lebenswissenschaften könnten Hochfeld-Quellen für ungeahnte Einblicke in die Struktur und Dynamik von Proteinen sorgen, ihre Vorteile kommen aber auch in den Materialwissenschaften zum Tragen. Hohe Terahertz-Felder können Materialien gezielt und selektiv beeinflussen, indem sie exotische Materiezustände erzeugen.

Diese existieren zwar oft nur für ultrakurze Zeitspannen von einer billionstel Sekunde, sie könnten aber zu einem besseren Verständnis von ungeklärten Phänomenen wie etwa der Hochtemperatur-Supraleitung beitragen. Das Problem: Bisher verfügbare Terahertz-Quellen haben für viele Untersuchungen ungeeignete Parameter, also beispielsweise nur sehr niedrige Wiederholraten.

Mehr Pulse pro Sekunde – neue Möglichkeiten

Gemeinsam mit Kollegen von Deutsches Elektronen-Synchrotron DESY und European XFEL in Hamburg, SLAC National Accelerator Laboratory in Stanford (USA) und Karlsruher Institut für Technologie KIT konnte die Terahertz-Arbeitsgruppe um HZDR-Physiker Dr. Michael Gensch nun zeigen, dass sich bereits mit einem sehr kompakten Beschleuniger kurze und starke Terahertz-Pulse mit unerreicht hohen Wiederholraten erzeugen lassen.

„Dadurch werden zahlreiche Experimente möglich, von denen Wissenschaftler weltweit bisher nur träumen konnten“, so Dr. Gensch. „Wir diskutieren derzeit mit unseren Pilotnutzern, welche Techniken wir am TELBE-Prototyp etablieren sollen, um die Parameter optimal auszunutzen.“

Hohe Terahertz-Felder bringen Elektronenspins zum Pendeln

Die nun publizierten Resultate sind das Ergebnis einer mehrjährigen Zusammenarbeit von Beschleunigerphysikern, Laserexperten und Material- und Lebenswissenschaftlern. Ihr Ziel: Eine Prototyp-Anlage am ELBE-Zentrum für Hochleistungs-Strahlenquellen des HZDR zu entwickeln, die von Beginn an für viele Forschungsbereiche exzellente Experimentiermöglichkeiten bietet. Im aktuellen Pilotexperiment erzeugten die Forscher Spinwellen in Nickeloxid. Bei einem Spin handelt es sich um eine auch als Eigendrehimpuls bezeichnete quantenmechanische Eigenschaft der Elektronen, die eng mit den magnetischen Eigenschaften von Materialien verknüpft ist.

Das hohe Magnetfeld der Terahertz-Pulse aus der TELBE-Anlage koppelt direkt an die Elektronenspins im Material Nickeloxid und regt sie zu einer einheitlichen Rotationsbewegung an. So entstehen Spinwellen, mit denen sich prinzipiell, wie bei fließenden Ladungsträgern auch, Informationen transportieren und verarbeiten lassen.

Das Besondere: Die beobachtete Auslenkung der Spins, also die Größe der Rotationsbewegung, war deutlich größer als bei bisherigen Untersuchungen. Durch die im Vergleich zu existierenden Anlagen um mehrere Größenordnungen höhere Wiederholrate können derartige Experimente zudem schneller und mit besserer Auflösung durchgeführt werden. „Wenn wir die Zielparameter der TELBE-Anlage erreicht haben, stehen uns 100-fach stärkere Terahertz-Pulse zur Verfügung. Damit kommen wir dann bereits in Größenordnungen, bei denen wir nicht nur kohärente Spinwellen anregen, sondern sogar eine Spinumkehr erreichen können. Das hätte eine hohe technologische Bedeutung“, sagt Dr. Gensch.

Einzigartige Experimente im Multi-User-Betrieb

Eine weitere Neuerung: Ein Beschleuniger treibt mehrere Terahertz-Strahler parallel an. Somit können an Nutzeranlagen der Zukunft – wie beispielsweise TELBE am Dresdner Helmholtz-Zentrum – mehrere Anwender gleichzeitig Experimente im sogenannten Multi-User-Betrieb durchführen. „Wir wollen jetzt untersuchen, ob wir auch eine dritte, besonders schmalbandige Quelle parallel betreiben können. Mittelfristig könnten dann auch mehr als zwei Messplätze für Hochfeld-Terahertz-Experimente zur Verfügung stehen“, sagt Dr. Sergey Kovalev, der für die Betreuung der zukünftigen Nutzer verantwortliche Physiker an der TELBE Anlage.

TELBE wird ab dem Sommer im sogenannten „friendly user“-Modus betrieben. „Gerade in der Anfangszeit von neuen Anlagen kann es passieren, dass noch nicht alle Parameter passgenau für alle vorgeschlagenen Experimente eingestellt werden können“, sagt Dr. Kovalev. „Wir sind aus diesem Grund auch während der Experimente die ganze Zeit vor Ort, um unsere Messgäste zu unterstützen und die Anlage zu optimieren“. Schon jetzt ist die beschränkte Experimentierzeit europaweit stark nachgefragt.

Publikation: Green, B. et al., „High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter“, Scientific Reports 6, 2016 (doi: 10.1038/srep22256)

Weitere Informationen:
Dr. Michael Gensch
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-2464 | E-Mail: m.gensch@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin & Leitung HZDR-Kommunikation
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden |

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/thz

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Blasen im Pulsarwind schlagen Funken
22.11.2017 | Max-Planck-Institut für Kernphysik

nachricht Eine Nano-Uhr mit präzisen Zeigern
21.11.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

IfBB bei 12th European Bioplastics Conference mit dabei: neue Marktzahlen, neue Forschungsthemen

22.11.2017 | Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Bakterien als Schrittmacher des Darms

22.11.2017 | Biowissenschaften Chemie

Ozeanversauerung schädigt Miesmuscheln im Frühstadium

22.11.2017 | Biowissenschaften Chemie

Die gefrorenen Küsten der Arktis: Ein Lebensraum schmilzt davon

22.11.2017 | Geowissenschaften