Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Liga für Terahertz-Lichtquellen

07.03.2016

Terahertz-Strahlung ist unsichtbar und für den Menschen ungefährlich. Sie ist besonders gut geeignet, moderne Materialien oder komplexe biologische Vorgänge zu untersuchen. Am Elektronenbeschleuniger ELBE des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) haben Wissenschaftler nun eine Prototyp-Anlage für die Forschung mit starken Terahertz-Feldern aufgebaut. Die Anlage mit dem Namen TELBE erzeugt starke Lichtpulse bei gleichzeitig unerreicht hoher Wiederholrate, erlaubt also um Größenordnungen mehr Messungen pro Sekunde als an existierenden Quellen. In der Zeitschrift „Scientific Reports“ berichten die Forscher über eine erste Serie erfolgreicher Experimente.

Mit Wellenlängen zwischen 0,03 und drei Millimetern handelt es sich bei Terahertz-Licht um Wärmestrahlung im fernen und mittleren Infrarot-Bereich. Wie jede Strahlung im elektromagnetischen Spektrum, besteht auch Terahertz-Strahlung aus gekoppelten elektrischen und magnetischen Feldern.


An der Prototyp-Anlage TELBE am ELBE-Zentrum für Hochleistungs-Strahlenquellen des HZDR werden zwei Terahertz-Quellen parallel betrieben: ein Diffraktionsstrahler (rechts) und eine Undulator-Quelle.

HZDR/F. Bierstedt

Seit einigen Jahren werden starke Laserpulse im Terahertz-Regime erfolgreich an sogenannten Hochfeld-Terahertz-Quellen erzeugt. Damit sind neuartige Experimente mit besonders hohen magnetischen und elektrischen Feldstärken der Terahertz-Strahlung möglich.

In den Lebenswissenschaften könnten Hochfeld-Quellen für ungeahnte Einblicke in die Struktur und Dynamik von Proteinen sorgen, ihre Vorteile kommen aber auch in den Materialwissenschaften zum Tragen. Hohe Terahertz-Felder können Materialien gezielt und selektiv beeinflussen, indem sie exotische Materiezustände erzeugen.

Diese existieren zwar oft nur für ultrakurze Zeitspannen von einer billionstel Sekunde, sie könnten aber zu einem besseren Verständnis von ungeklärten Phänomenen wie etwa der Hochtemperatur-Supraleitung beitragen. Das Problem: Bisher verfügbare Terahertz-Quellen haben für viele Untersuchungen ungeeignete Parameter, also beispielsweise nur sehr niedrige Wiederholraten.

Mehr Pulse pro Sekunde – neue Möglichkeiten

Gemeinsam mit Kollegen von Deutsches Elektronen-Synchrotron DESY und European XFEL in Hamburg, SLAC National Accelerator Laboratory in Stanford (USA) und Karlsruher Institut für Technologie KIT konnte die Terahertz-Arbeitsgruppe um HZDR-Physiker Dr. Michael Gensch nun zeigen, dass sich bereits mit einem sehr kompakten Beschleuniger kurze und starke Terahertz-Pulse mit unerreicht hohen Wiederholraten erzeugen lassen.

„Dadurch werden zahlreiche Experimente möglich, von denen Wissenschaftler weltweit bisher nur träumen konnten“, so Dr. Gensch. „Wir diskutieren derzeit mit unseren Pilotnutzern, welche Techniken wir am TELBE-Prototyp etablieren sollen, um die Parameter optimal auszunutzen.“

Hohe Terahertz-Felder bringen Elektronenspins zum Pendeln

Die nun publizierten Resultate sind das Ergebnis einer mehrjährigen Zusammenarbeit von Beschleunigerphysikern, Laserexperten und Material- und Lebenswissenschaftlern. Ihr Ziel: Eine Prototyp-Anlage am ELBE-Zentrum für Hochleistungs-Strahlenquellen des HZDR zu entwickeln, die von Beginn an für viele Forschungsbereiche exzellente Experimentiermöglichkeiten bietet. Im aktuellen Pilotexperiment erzeugten die Forscher Spinwellen in Nickeloxid. Bei einem Spin handelt es sich um eine auch als Eigendrehimpuls bezeichnete quantenmechanische Eigenschaft der Elektronen, die eng mit den magnetischen Eigenschaften von Materialien verknüpft ist.

Das hohe Magnetfeld der Terahertz-Pulse aus der TELBE-Anlage koppelt direkt an die Elektronenspins im Material Nickeloxid und regt sie zu einer einheitlichen Rotationsbewegung an. So entstehen Spinwellen, mit denen sich prinzipiell, wie bei fließenden Ladungsträgern auch, Informationen transportieren und verarbeiten lassen.

Das Besondere: Die beobachtete Auslenkung der Spins, also die Größe der Rotationsbewegung, war deutlich größer als bei bisherigen Untersuchungen. Durch die im Vergleich zu existierenden Anlagen um mehrere Größenordnungen höhere Wiederholrate können derartige Experimente zudem schneller und mit besserer Auflösung durchgeführt werden. „Wenn wir die Zielparameter der TELBE-Anlage erreicht haben, stehen uns 100-fach stärkere Terahertz-Pulse zur Verfügung. Damit kommen wir dann bereits in Größenordnungen, bei denen wir nicht nur kohärente Spinwellen anregen, sondern sogar eine Spinumkehr erreichen können. Das hätte eine hohe technologische Bedeutung“, sagt Dr. Gensch.

Einzigartige Experimente im Multi-User-Betrieb

Eine weitere Neuerung: Ein Beschleuniger treibt mehrere Terahertz-Strahler parallel an. Somit können an Nutzeranlagen der Zukunft – wie beispielsweise TELBE am Dresdner Helmholtz-Zentrum – mehrere Anwender gleichzeitig Experimente im sogenannten Multi-User-Betrieb durchführen. „Wir wollen jetzt untersuchen, ob wir auch eine dritte, besonders schmalbandige Quelle parallel betreiben können. Mittelfristig könnten dann auch mehr als zwei Messplätze für Hochfeld-Terahertz-Experimente zur Verfügung stehen“, sagt Dr. Sergey Kovalev, der für die Betreuung der zukünftigen Nutzer verantwortliche Physiker an der TELBE Anlage.

TELBE wird ab dem Sommer im sogenannten „friendly user“-Modus betrieben. „Gerade in der Anfangszeit von neuen Anlagen kann es passieren, dass noch nicht alle Parameter passgenau für alle vorgeschlagenen Experimente eingestellt werden können“, sagt Dr. Kovalev. „Wir sind aus diesem Grund auch während der Experimente die ganze Zeit vor Ort, um unsere Messgäste zu unterstützen und die Anlage zu optimieren“. Schon jetzt ist die beschränkte Experimentierzeit europaweit stark nachgefragt.

Publikation: Green, B. et al., „High-Field High-Repetition-Rate Sources for the Coherent THz Control of Matter“, Scientific Reports 6, 2016 (doi: 10.1038/srep22256)

Weitere Informationen:
Dr. Michael Gensch
Institut für Strahlenphysik am HZDR
Tel. +49 351 260-2464 | E-Mail: m.gensch@hzdr.de

Medienkontakt:
Christine Bohnet | Pressesprecherin & Leitung HZDR-Kommunikation
Tel. +49 351 260-2450 | E-Mail: c.bohnet@hzdr.de
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden |

Das Helmholtz-Zentrum Dresden-Rossendorf (HZDR) forscht auf den Gebieten Energie, Gesundheit und Materie. Folgende Fragestellungen stehen hierbei im Fokus:
• Wie nutzt man Energie und Ressourcen effizient, sicher und nachhaltig?
• Wie können Krebserkrankungen besser visualisiert, charakterisiert und wirksam behandelt werden?
• Wie verhalten sich Materie und Materialien unter dem Einfluss hoher Felder und in kleinsten Dimensionen?
Das HZDR ist Mitglied der Helmholtz-Gemeinschaft, hat vier Standorte (Dresden, Leipzig, Freiberg, Grenoble) und beschäftigt rund 1.100 Mitarbeiter – davon etwa 500 Wissenschaftler inklusive 150 Doktoranden.

Weitere Informationen:

http://www.hzdr.de/presse/thz

Dr. Christine Bohnet | Helmholtz-Zentrum Dresden-Rossendorf

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics