Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Lichtquelle für die Bildgebung

16.06.2015

Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine Lichtquelle entwickelt, aus der harte, brillante Röntgenstrahlung erzeugt wird. Mit Hilfe von Laserlicht werden so erstmals kleinste Strukturen in Materie sichtbar.

Seit rund 110 Jahren verlässt sich die Medizin auf Röntgenstrahlung und damit auf das Prinzip der Röntgenröhre. Ihr Hauptnachteil ist die schlechte Bündelung der emittierten Strahlung, d.h. sie kommt aus einer großen Quelle, wird in alle Richtungen emittiert und hat ein breites Energiespektrum. Das führt bei der Bildgebung zu relativ schlechter Auflösung feiner Struktur-und Gewebeunterschiede.


Das ATLAS Lasersystem im Laboratory for Extreme Photonics (LEX Photonics) der Ludwig-Maximilians-Universität dient als Lichtquelle für das neue, brillante Röntgenlicht.

Thorsten Naeser

Bessere Auflösung erzielen Synchrotron-Röntgenquellen, deren Dimensionen und Kosten den Einsatz im Krankenhaus verhindern. Doch es gibt eine Alternative: denn ähnlich gut wie Synchrotron-Strahlung, aber ungleich kompakter, geht es mit Laserlicht: es beschleunigt Elektronen und zwingt sie auf Wellenbahnen. Aus den Bewegungen gewinnt man harte und gleichzeitig brillante Röntgenstrahlung und macht damit kleinste Details in Materie sichtbar.

Das ist jetzt Physikern des Labors für Attosekundenphysik (LAP) an der Ludwig-Maximilians-Universität (LMU) und dem Max-Planck-Institut für Quantenoptik (MPQ) erstmals gelungen. Die Forscher haben diese Röntgenstrahlung mit Hilfe von Laserlicht in verschiedenen Wellenlängen und mit extrem kurzer Dauer produziert, je nach den Bedürfnissen für die Anwendung.

So können nun Strukturen in Materialien aufgefunden werden, die nur wenig mehr als zehn Mikrometer groß und unterschiedlich zusammengesetzt sind. Daraus ergeben sich vielversprechende Perspektiven in den Materialwissenschaften, der Biologie und vor allem der Medizin.

Will man kleinste Strukturen in Materie sichtbar machen, braucht man ein Licht, das kurze Wellenlängen besitzt und über eine hohe Brillanz verfügt. Brillante Strahlung bündelt viele Photonen (Lichtteilchen) gleicher Wellenlänge auf engstem Raum in kürzester Zeit.

Harte Röntgenstrahlung ist dafür das Licht der Wahl, da es Materie durchdringt und über Wellenlängen von wenigen Hundertstel Nanometern (hundertstel Milliardstel Meter) verfügt. Harte und gleichzeitig brillante Röntgenstrahlung wird heute in großen und teuren Beschleunigeranlagen produziert. Doch es geht Platz sparender und billiger, nämlich mit Licht.

Einen großen Schritt auf diesem Weg in die Zukunft hat ein Team vom Labor für Attosekundenphysik der LMU und des MPQ zurückgelegt. Die Physiker um Prof. Stefan Karsch und Laszlo Veisz haben harte, brillante Röntgenstrahlung mit Hilfe von Licht erzeugt. Ihre Wellenlänge ist zudem anpassbar auf die Bedürfnisse ihrer Anwendung.

Die Wissenschaftler schickten Laserpulse von rund 25 Femtosekunden Dauer und einer Leistung von 60 Terawatt (6x10^13 Watt) auf Wasserstoffatome. Zum Vergleich: Ein Atomkraftwerk produziert gerade mal 1500 Megawatt (1.5x10^9 Watt). Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde. Dabei lösten die elektrischen Felder des Lichts die Elektronen von den Atomkernen, so dass ein Plasma entstand und räumten sie wie ein Schneepflug aus dem Weg.

Übrig blieben die Ionen (positiv geladene Atome), die um einiges schwerer sind als die Elektronen. Die Trennung der Ladungen bewirkt sehr starke elektrische Felder, die dazu führen, dass die weggeräumten Elektronen wieder zurückfedern und zu schwingen anfangen, was die Ausbildung einer Wellenstruktur in Plasma zur Folge hat. Diese läuft dem Laserpuls mit fast Lichtgeschwindigkeit hinterher, ähnlich wie die Kielwelle eines Bootes auf der Wasseroberfläche. Einige der freien Elektronen werden eingefangen und reiten auf ihr ähnlich wie Surfer in der Brandung, wobei sie immer in Richtung des Laserpulses fast bis auf Lichtgeschwindigkeit beschleunigt werden.

Sobald die Elektronen ihre maximale Geschwindigkeit erreicht haben, treffen sie frontal auf einen gegenläufigen Lichtpuls. Dessen elektrische Felder in Wellenform zwingen die Elektronen auf einen ebenso wellenförmigen Schlingerkurs, wobei sie senkrecht zur Flugrichtung beschleunigt und wieder abgebremst werden. Das System nennt man optischen Undulator. Die Teilchen senden dabei brillante Röntgenstrahlung aus, die eine Wellenlänge von bis zu 0,03 Nanometer hat. Zudem konnten bei diesen Experimenten zum ersten Mal die Oberschwingungen der Elektronenbewegung im Lichtfeld direkt im Röntgenspektrum sichtbar gemacht werden, was an Beschleunigeranlagen immer wieder versucht wurde.

Im Vergleich zu bisherigen Röntgenquellen bietet das System einen großen Vorteil: die Durchstimmbarkeit der emittierten Wellenlänge über einen großen Bereich, die Wellenlänge ist also veränderbar. Daraus ergibt sich zum Beispiel in der Medizin die Möglichkeit verschiedene Arten von Gewebe genau zu analysieren. Denn je feiner abgestimmt die Röntgenstrahlung ist, desto genauer werden die Informationen, die man gewinnt.

Doch das ist noch nicht alles: denn nicht nur durch die abstimmbare Wellenlänge und hohe Brillanz gewinnt die lichtgetriebene Strahlung an Qualität, sondern auch durch ihre gepulste Form. Denn aus den Femtosekunden-langen Laserpulsen entstehen rund fünf Femtosekunden lange Röntgenpulse. Daraus werden sich neue Anwendungen ergeben, wie zum Beispiel zeitaufgelöste Spektroskopie zur Untersuchung ultraschneller Vorgänge im Mikrokosmos. Noch verfügt die neue Lichtquelle nicht über eine genügend hohe Intensität, also nicht genügend Lichtteilchen pro Puls. Die Pulse mit mehr Lichtteilchen anreichern werden die Physiker nun im neuen Centre for Advanced Laser Applications CALA, das gerade auf dem Campus Garching gebaut wird.

Dann kann die neue, lichtgetriebene Strahlung zum Beispiel mit dem so genannten Phasenkontrast-Röntgentomographie-Bildgebungsverfahren gekoppelt werden, das von Prof. Franz Pfeiffer an der Technischen Universität München verfeinert wird. Dabei nutzt man im Gegensatz zur üblichen Absorption der Strahlung ihre Brechung an Objekten. „Damit können wir heute schon bis zu zehn Mikrometer kleine Strukturen in nicht durchsichtigen Objekten aufspüren“, erläutert Stefan Karsch. „Mit der neuen Röntgenquelle werden wir dann noch genauere Informationen aus Gewebe oder anderem Material gewinnen“, ist Karsch überzeugt.

Originalpublikation:

K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, L. Veisz, and S. Karsch
Tunable All-Optical Quasimonochromatic Thomson X-Ray Source in the Nonlinear Regime
Physical Review Letters 114, 195003 (2015), 14 May 2015

Kontakt:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 32905 242
Email: stefan.karsch@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de - Homepage des Labors für Attosekundenphysik (LAP)
http://www.lex-photonics.de - Homepage des Laboratory for Extreme Photonics (LEX Photonics)

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

nachricht Einblicke ins Atom
23.01.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie