Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Lichtquelle für die Bildgebung

16.06.2015

Physiker der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine Lichtquelle entwickelt, aus der harte, brillante Röntgenstrahlung erzeugt wird. Mit Hilfe von Laserlicht werden so erstmals kleinste Strukturen in Materie sichtbar.

Seit rund 110 Jahren verlässt sich die Medizin auf Röntgenstrahlung und damit auf das Prinzip der Röntgenröhre. Ihr Hauptnachteil ist die schlechte Bündelung der emittierten Strahlung, d.h. sie kommt aus einer großen Quelle, wird in alle Richtungen emittiert und hat ein breites Energiespektrum. Das führt bei der Bildgebung zu relativ schlechter Auflösung feiner Struktur-und Gewebeunterschiede.


Das ATLAS Lasersystem im Laboratory for Extreme Photonics (LEX Photonics) der Ludwig-Maximilians-Universität dient als Lichtquelle für das neue, brillante Röntgenlicht.

Thorsten Naeser

Bessere Auflösung erzielen Synchrotron-Röntgenquellen, deren Dimensionen und Kosten den Einsatz im Krankenhaus verhindern. Doch es gibt eine Alternative: denn ähnlich gut wie Synchrotron-Strahlung, aber ungleich kompakter, geht es mit Laserlicht: es beschleunigt Elektronen und zwingt sie auf Wellenbahnen. Aus den Bewegungen gewinnt man harte und gleichzeitig brillante Röntgenstrahlung und macht damit kleinste Details in Materie sichtbar.

Das ist jetzt Physikern des Labors für Attosekundenphysik (LAP) an der Ludwig-Maximilians-Universität (LMU) und dem Max-Planck-Institut für Quantenoptik (MPQ) erstmals gelungen. Die Forscher haben diese Röntgenstrahlung mit Hilfe von Laserlicht in verschiedenen Wellenlängen und mit extrem kurzer Dauer produziert, je nach den Bedürfnissen für die Anwendung.

So können nun Strukturen in Materialien aufgefunden werden, die nur wenig mehr als zehn Mikrometer groß und unterschiedlich zusammengesetzt sind. Daraus ergeben sich vielversprechende Perspektiven in den Materialwissenschaften, der Biologie und vor allem der Medizin.

Will man kleinste Strukturen in Materie sichtbar machen, braucht man ein Licht, das kurze Wellenlängen besitzt und über eine hohe Brillanz verfügt. Brillante Strahlung bündelt viele Photonen (Lichtteilchen) gleicher Wellenlänge auf engstem Raum in kürzester Zeit.

Harte Röntgenstrahlung ist dafür das Licht der Wahl, da es Materie durchdringt und über Wellenlängen von wenigen Hundertstel Nanometern (hundertstel Milliardstel Meter) verfügt. Harte und gleichzeitig brillante Röntgenstrahlung wird heute in großen und teuren Beschleunigeranlagen produziert. Doch es geht Platz sparender und billiger, nämlich mit Licht.

Einen großen Schritt auf diesem Weg in die Zukunft hat ein Team vom Labor für Attosekundenphysik der LMU und des MPQ zurückgelegt. Die Physiker um Prof. Stefan Karsch und Laszlo Veisz haben harte, brillante Röntgenstrahlung mit Hilfe von Licht erzeugt. Ihre Wellenlänge ist zudem anpassbar auf die Bedürfnisse ihrer Anwendung.

Die Wissenschaftler schickten Laserpulse von rund 25 Femtosekunden Dauer und einer Leistung von 60 Terawatt (6x10^13 Watt) auf Wasserstoffatome. Zum Vergleich: Ein Atomkraftwerk produziert gerade mal 1500 Megawatt (1.5x10^9 Watt). Eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde. Dabei lösten die elektrischen Felder des Lichts die Elektronen von den Atomkernen, so dass ein Plasma entstand und räumten sie wie ein Schneepflug aus dem Weg.

Übrig blieben die Ionen (positiv geladene Atome), die um einiges schwerer sind als die Elektronen. Die Trennung der Ladungen bewirkt sehr starke elektrische Felder, die dazu führen, dass die weggeräumten Elektronen wieder zurückfedern und zu schwingen anfangen, was die Ausbildung einer Wellenstruktur in Plasma zur Folge hat. Diese läuft dem Laserpuls mit fast Lichtgeschwindigkeit hinterher, ähnlich wie die Kielwelle eines Bootes auf der Wasseroberfläche. Einige der freien Elektronen werden eingefangen und reiten auf ihr ähnlich wie Surfer in der Brandung, wobei sie immer in Richtung des Laserpulses fast bis auf Lichtgeschwindigkeit beschleunigt werden.

Sobald die Elektronen ihre maximale Geschwindigkeit erreicht haben, treffen sie frontal auf einen gegenläufigen Lichtpuls. Dessen elektrische Felder in Wellenform zwingen die Elektronen auf einen ebenso wellenförmigen Schlingerkurs, wobei sie senkrecht zur Flugrichtung beschleunigt und wieder abgebremst werden. Das System nennt man optischen Undulator. Die Teilchen senden dabei brillante Röntgenstrahlung aus, die eine Wellenlänge von bis zu 0,03 Nanometer hat. Zudem konnten bei diesen Experimenten zum ersten Mal die Oberschwingungen der Elektronenbewegung im Lichtfeld direkt im Röntgenspektrum sichtbar gemacht werden, was an Beschleunigeranlagen immer wieder versucht wurde.

Im Vergleich zu bisherigen Röntgenquellen bietet das System einen großen Vorteil: die Durchstimmbarkeit der emittierten Wellenlänge über einen großen Bereich, die Wellenlänge ist also veränderbar. Daraus ergibt sich zum Beispiel in der Medizin die Möglichkeit verschiedene Arten von Gewebe genau zu analysieren. Denn je feiner abgestimmt die Röntgenstrahlung ist, desto genauer werden die Informationen, die man gewinnt.

Doch das ist noch nicht alles: denn nicht nur durch die abstimmbare Wellenlänge und hohe Brillanz gewinnt die lichtgetriebene Strahlung an Qualität, sondern auch durch ihre gepulste Form. Denn aus den Femtosekunden-langen Laserpulsen entstehen rund fünf Femtosekunden lange Röntgenpulse. Daraus werden sich neue Anwendungen ergeben, wie zum Beispiel zeitaufgelöste Spektroskopie zur Untersuchung ultraschneller Vorgänge im Mikrokosmos. Noch verfügt die neue Lichtquelle nicht über eine genügend hohe Intensität, also nicht genügend Lichtteilchen pro Puls. Die Pulse mit mehr Lichtteilchen anreichern werden die Physiker nun im neuen Centre for Advanced Laser Applications CALA, das gerade auf dem Campus Garching gebaut wird.

Dann kann die neue, lichtgetriebene Strahlung zum Beispiel mit dem so genannten Phasenkontrast-Röntgentomographie-Bildgebungsverfahren gekoppelt werden, das von Prof. Franz Pfeiffer an der Technischen Universität München verfeinert wird. Dabei nutzt man im Gegensatz zur üblichen Absorption der Strahlung ihre Brechung an Objekten. „Damit können wir heute schon bis zu zehn Mikrometer kleine Strukturen in nicht durchsichtigen Objekten aufspüren“, erläutert Stefan Karsch. „Mit der neuen Röntgenquelle werden wir dann noch genauere Informationen aus Gewebe oder anderem Material gewinnen“, ist Karsch überzeugt.

Originalpublikation:

K. Khrennikov, J. Wenz, A. Buck, J. Xu, M. Heigoldt, L. Veisz, and S. Karsch
Tunable All-Optical Quasimonochromatic Thomson X-Ray Source in the Nonlinear Regime
Physical Review Letters 114, 195003 (2015), 14 May 2015

Kontakt:
Prof. Dr. Stefan Karsch
Fakultät für Physik der Ludwig-Maximilians-Universität München
Am Coulombwall 1, 85748 Garching
Tel.: 32905 242
Email: stefan.karsch@mpq.mpg.de

Weitere Informationen:

http://www.attoworld.de - Homepage des Labors für Attosekundenphysik (LAP)
http://www.lex-photonics.de - Homepage des Laboratory for Extreme Photonics (LEX Photonics)

Karolina Schneider | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie