Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine neue Art von Quanten-Bits

26.07.2016

Ein Forscherteam aus Deutschland, Frankreich und der Schweiz hat Quanten-Bits, kurz Qubits, in einer neuen Form umgesetzt. Eines Tages könnten diese die Informationseinheiten eines Quantencomputers sein. Bislang hatten die Wissenschaftler Qubits in Form von einzelnen Elektronen realisiert. Das führte jedoch zu Störeffekten und machte die Informationsträger schwer zu programmieren und auszulesen. Dieses Problem beseitigte die Gruppe nun, indem sie Elektronenlöcher statt Elektronen als Qubits nutzte. Das Team berichtet in der Zeitschrift „Nature Materials“.

In den Computern der Zukunft könnten Informationen in Form von Quanten-Bits gespeichert sein. Aber wie kann man ein Quanten-Bit eigentlich realisieren?


Das Team vom Lehrstuhl für Festkörperphysik arbeitet mit winzigen Strukturen. Die Quantenpunkte, die die Forscher um Andreas Wieck erzeugen, sind gerade einmal 30 Nanometer breit.

RUB, Marquard


Mit dieser Apparatur erzeugte Doktorand Sascha René Valentin Quantenpunkte mit Elektronenlöchern.

RUB, Marquard

Ein Forscherteam aus Deutschland, Frankreich und der Schweiz hat Quanten-Bits, kurz Qubits, in einer neuen Form umgesetzt. Eines Tages könnten diese die Informationseinheiten eines Quantencomputers sein.

Bislang hatten die Wissenschaftler Qubits in Form von einzelnen Elektronen realisiert (http://aktuell.ruhr-uni-bochum.de/pm2012/pm00090.html.de). Das führte jedoch zu Störeffekten und machte die Informationsträger schwer zu programmieren und auszulesen. Dieses Problem beseitigte die Gruppe nun, indem sie Elektronenlöcher statt Elektronen als Qubits nutzte.

In der Zeitschrift „Nature Materials“ berichtet ein Team der Ruhr-Universität Bochum, der Universität Basel und der Universität Lyon, an dem unter anderem die beiden Bochumer Forscher Prof. Dr. Andreas Wieck und Dr. Arne Ludwig vom Lehrstuhl für Angewandte Festkörperphysik beteiligt waren. Der Schweizer Wissenschaftler Prof. Dr. Richard Warburton leitete das Projekt.

Elektronen als Qubits

Um Qubits in Form von Elektronen umzusetzen, sperrt man ein Elektron in einem umgrenzten Bereich eines Halbleiters ein, im sogenannten Quantenpunkt. Der Spin, also der Eigendrehimpuls macht das Elektron zu einem kleinen Dauermagneten. Forscher können den Spin über ein äußeres Magnetfeld beeinflussen und in Kreiselbewegungen versetzen. Mit der Richtung dieser Bewegung können sie Informationen codieren.

Das Problem: Die Kernspins der umliegenden Atome erzeugen ebenfalls Magnetfelder, die das äußere Magnetfeld in zufälliger, unvorhersehbarer Weise verzerren. Das stört das Programmieren und Auslesen der Qubits. Also suchte das Team nach einer anderen Methode. Die Lösung: Statt einzelne Elektronen im Quantenpunkt einzusperren, entfernte das Team gezielt bestimmte Elektronen. Dadurch entstanden positiv geladene Fehlstellen in der Elektronenmenge, auch Elektronenlöcher genannt.

Vorteile von Elektronenlöchern

Die Elektronenlöcher besitzen ebenfalls einen Spin, den die Forscher über Magnetfelder manipulieren können, um Informationen zu codieren. Da die Löcher positiv geladen sind, gehen sie den ebenfalls positiv geladenen Kernen der umgebenden Atome aus dem Weg. Somit sind sie quasi immun gegen die störenden Einflüsse der Kernspins.

„Das ist wichtig, wenn man eines Tages reproduzierbare Bauteile herstellen möchte, die auf Quanten-Bits basieren“, erklärt Andreas Wieck. Allerdings funktioniert die Methode nur bei tiefen Temperaturen, da Wärme die Löcher tendenziell leichter durcheinanderbringt als Elektronen.

An der Ruhr-Universität können Forscher Quantenpunkte mit weltweit einzigartiger Qualität herstellen. Das Experiment war nun Dank eines von Arne Ludwig in Basel entwickelten und dann an der RUB am Lehrstuhl von Andreas Wieck realisierten Strukturdesigns möglich. Hierbei konnten die Forscher die Quantenpunkte nicht nur in hoher Qualität mit einzelnen Elektronen, sondern auch mit Elektronenlöchern versehen. Der Bochumer Doktorand Sascha René Valentin setzte das Verfahren für die aktuelle Studie ein.

Förderung

Das Projekt wurde gefördert von der Deutschen Forschungsgemeinschaft (DFG TRR160), dem Bundesministerium für Bildung und Forschung (Q.com-H 16KIS0109), der Europäischen Union im FP7-Programm (IPN S3NANO), dem National Centre of Competence in Research „Quantum Science and Technology“ und dem Schweizerischen Nationalfonds (200020 156637).

Originalveröffentlichung

Jonathan H. Prechtel, Andreas V. Kuhlmann, Julien Houel, Arne Ludwig, Sascha R. Valentin, Andreas D. Wieck, Richard J. Warburton (2016): The hole spin qubit: decoupling from the nuclear spins, in: Nature Materials, 2016, DOI: 10.1038/nmat4704

Pressekontakt

Prof. Dr. Andreas Wieck, Lehrstuhl für Angewandte Festkörperphysik, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, Tel.: 0234 32 26726, E-Mail: andreas.wieck@rub.de

Redaktion: Dr. Julia Weiler

Meike Drießen | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Maschinelles Lernen im Quantenlabor
19.01.2018 | Universität Innsbruck

nachricht Seltsames Verhalten eines Sterns offenbart Schwarzes Loch, das sich in riesigem Sternhaufen verbirgt
17.01.2018 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Im Focus: Forscher entschlüsseln zentrales Reaktionsprinzip von Metalloenzymen

Sogenannte vorverspannte Zustände beschleunigen auch photochemische Reaktionen

Was ermöglicht den schnellen Transfer von Elektronen, beispielsweise in der Photosynthese? Ein interdisziplinäres Forscherteam hat die Funktionsweise wichtiger...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

LED Produktentwicklung – Leuchten mit aktuellem Wissen

18.01.2018 | Veranstaltungen

6. Technologie- und Anwendungsdialog am 18. Januar 2018 an der TH Wildau: „Intelligente Logistik“

18.01.2018 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rittal vereinbart mit dem Betriebsrat von RWG Sozialplan - Zukunftsorientierter Dialog führt zur Einigkeit

19.01.2018 | Unternehmensmeldung

Open Science auf offener See

19.01.2018 | Geowissenschaften

Original bleibt Original - Neues Produktschutzverfahren für KFZ-Kennzeichenschilder

19.01.2018 | Informationstechnologie