Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Nanolampe mit blitzschnellem Schalter

04.11.2014

Eine Lichtquelle und ihre transistorgesteuerte Helligkeitsregelung schrumpfen auf die Größe eines einzelnen Moleküls

Information wird in immer kleineren Bauelementen verarbeitet und übertragen, und zwar mal mit Elektronen und mal mit Licht.


Zwischen einer Goldoberfläche, die mit einer Schicht kugeliger Kohlenstoff-Moleküle beschichtet ist, und der Spitze eines Rastertunnelmikroskops legen Forscher des Max-Planck-Instituts für Festkörperforschung eine Spannung an. Das elektrische Feld, das dabei entsteht und in der Grafik durch die grauen Pfeile angedeutet wird, lässt sich über die Höhe der Spannung und über den Abstand zwischen der Spitze und der Metalloberfläche regulieren. Ab einer bestimmten Feldstärke wird die elektrische Energie an dem in Magenta dargestellten Molekül in Licht, angedeutet durch die gelbe Welle, umgewandelt.

© MPI für Mikrostrukturphysik

Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart haben nun eine Lichtquelle entwickelt, die einen elektrischen Spannungspuls mithilfe eines einzelnen Moleküls in einen Lichtpuls umwandelt.

Dabei wirkt das Molekül wie ein transistorgesteuerter Lichtschalter, der es sogar erlaubt, die Intensität des Lichts zu regeln. Da sich das Licht mit dem molekularen Schalter äußerst schnell an- und ausschalten lässt, könnte die Lichtquelle als Blaupause für Nano-Bauelemente dienen, die elektrische Signale mit Gigahertz-Frequenz in optische Signale umwandeln.

Organische Farbstoffe bringen heute nicht mehr nur Farbe auf Tapeten, in Zeitschriften oder auf Kleider, wenn sie mit Licht angestrahlt werden. Inzwischen leuchten sie selbst in elektrischen Lichtquellen, nämlich in den organischen Leuchtdioden (OLEDs) etwa für die Bildschirme von Smartphones. Die Displays enthalten neben den eigentlichen Lichtquellen (Pixeln) zusätzlich aber immer noch Transistoren, mit denen sich deren Helligkeit regeln lässt. Beide Funktionen vereint ein Team des Max-Planck-Instituts für Festkörperforschung, des Max-Planck-EPFL Centers und des Karlsruhe Instituts für Technologie nun in einem einzigen Molekül.

Die Forscher um Klaus Kern, Direktor am Stuttgarter Max-Planck-Institut, konstruieren ihre Nanolampe mit integrierter Transistorsteuerung, indem sie ein Farbstoffmolekül auf einer Schicht aus Buckminster-Fullerenen – dabei handelt es sich um kugelige Kohlenstoff-Moleküle – platzieren. Die Schicht der Kohlenstoffkugeln überzieht einen Metallträger, in diesem Fall aus Gold, der als Elektrode dient. „Als zweite Elektrode über dem Farbstoff-Molekül verwenden wir die Spitze eines Rastertunnelmikroskops“, sagt Klaus Kuhnke. „Dafür eignet sich aber auch eine zweite dünne Metallschicht. „Allerdings konnten die Forscher die erstaunlichen Eigenschaften des einzelnen Moleküls nur entdecken, weil sie für ihre Studie eine bewegliche Spitze benutzten. Mit der Spitze rasterten sie nämlich die Oberfläche ab und maßen gleichzeitig das abgestrahlte Licht. „Dabei beobachteten wir, dass auf den Farbstoff-Molekülen Licht erzeugt wird“, so Kuhnke.

Die Spannung erzeugt zunächst Lichtwellen, die an der Metalloberfläche gefangen sind

Über eine elektrische Spannung zwischen dem Goldträger und der Spitze des Rastertunnelmikroskops (STM) sowie den Abstand zwischen den beiden elektrischen Kontakten, kontrollieren die Forscher nun das elektrische Feld an dem Molekül. Überschreitet diese 2,5 Volt pro Nanometer, wird die Lampe eingeschaltet. Das Molekül knipst das Licht aber nicht einfach nur an und aus. Vielmehr lässt sich die Lichtintensität mit seiner Hilfe über den sehr schmalen Bereich von einigen Millivolt kontinuierlich heller und dunkler regeln. Es funktioniert in diesem Bereich also ähnlich wie ein lichtemittierender Transistor.

Die elektrische Energie wird bei dem Schaltvorgang nicht direkt in Lichtenergie umgewandelt, sondern vermittelt durch sogenannte Plasmonen. Diese kann man sich als Lichtwellen vorstellen, die an der Metalloberfläche gefangenen sind und beispielsweise von einer Unebenheit auf der Oberfläche abgestrahlt werden können. Mit ihrer Hilfe könnte sich Information in Form von Licht auf engerem Raum übertragen oder verarbeiten lassen als mit Licht alleine. Denn Plasmonen können über Metallbahnen laufen, die schmaler als 100 Nanometer sind, während etwa Glasfasern mindestens halb so breit sein müssen wie die Wellenlänge des Lichts, das sie leiten.

Der Schaltvorgang dauert weniger als eine Milliardstel Sekunde

Das organische Molekül spielt bei der Erzeugung der gefangenen und abgestrahlten Lichtwellen auf der Metalloberfläche eine entscheidende Rolle: Eine minimale Änderung des elektrischen Feldes am Ort des Moleküls entscheidet darüber, ob das Licht erzeugt wird oder nicht. Das macht die Nanolampe interessant für die digitale Informationsübertragung mit Licht, bei ‚Licht an‘ für die Eins eines Datenbits und ‚Licht aus‘ für die Null steht. „Eine kleine Modulation des elektrischen Feldes an dem Molekül erzeugt eine Zeichenfolge, die als Licht abgestrahlt wird und eine Nachricht übermitteln kann“, sagt Klaus Kuhnke. Und weil die Lichtquelle oberhalb des Schwellenwertes bereits bei einer winzigen Spannungsänderung aufleuchtet, geht der Schaltvorgang auch sehr schnell vonstatten: Er dauert weniger als eine Milliardstel Sekunde, erlaubt also möglicherweise einmal eine Datenübertragung mit Bitraten im Gigahertz-Bereich.

Dass die Intensität des Lichts von nur einem einzigen Molekül gesteuert wird, ist dabei für die Schnelligkeit des Lichtschalters entscheidend. Mechanische Lichtschalter werden über Hebel betätigt und je wuchtiger dieser Hebel wird, umso aufwändiger ist es, den Schalter von einer Schaltposition in eine andere zu bewegen. In der Elektronik werden diese schwerfälligen Hebel durch unvermeidbare Kondensatoren, also Ladungsspeicher, gebildet, die einen Teil des Stroms verschlucken ohne damit Licht zu erzeugen. Je größer nun das Element wird, welches das Licht schalten soll, umso mehr Energie und Zeit ist erforderlich, um die „parasitären“ Kondensatoren aufzuladen. Hier hilft die Winzigkeit des Moleküls: Es kostet fast keine Energie mehr, die Umgebung eines einzelnen Moleküls von der Größe eines millionstel Millimeters um eine kleine Spannung von wenigen Millivolt aufzuladen – entsprechend schnell läuft der Schaltprozess ab. „Solch eine molekulare Lichtquelle verspricht damit, eines Tages einmal ein neues, effizientes Bauelement für die Informationsübertragung zu werden – zumal das erzeugte Licht zwar noch schwach, aber mit dem bloßen Auge bereits deutlich sichtbar ist“, sagt Klaus Kuhnke.


Ansprechpartner

 
Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1660
Fax: +49 711 689-1662
E-Mail: K.Kern@fkf.mpg.de
 

Dr. Klaus Kuhnke
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-5247
Fax: +49 711 689-1662
E-Mail: k.kuhnke@fkf.mpg.de


Originalpublikation


Christoph Große, Alexander Kabakchiev, Theresa Lutz, Romain Froidevaux, Frank Schramm, Mario Ruben, Markus Etzkorn, Uta Schlickum, Klaus Kuhnke und Klaus Kern

Dynamic Control of Plasmon Generation by an Individual Quantum System

Nano Letters, online veröffentlicht 2. September 2014; doi: 10.1021/nl502413k

Prof. Dr. Klaus Kern | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8728611/nano_lichtquelle_plasmon_transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik