Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Nanolampe mit blitzschnellem Schalter

04.11.2014

Eine Lichtquelle und ihre transistorgesteuerte Helligkeitsregelung schrumpfen auf die Größe eines einzelnen Moleküls

Information wird in immer kleineren Bauelementen verarbeitet und übertragen, und zwar mal mit Elektronen und mal mit Licht.


Zwischen einer Goldoberfläche, die mit einer Schicht kugeliger Kohlenstoff-Moleküle beschichtet ist, und der Spitze eines Rastertunnelmikroskops legen Forscher des Max-Planck-Instituts für Festkörperforschung eine Spannung an. Das elektrische Feld, das dabei entsteht und in der Grafik durch die grauen Pfeile angedeutet wird, lässt sich über die Höhe der Spannung und über den Abstand zwischen der Spitze und der Metalloberfläche regulieren. Ab einer bestimmten Feldstärke wird die elektrische Energie an dem in Magenta dargestellten Molekül in Licht, angedeutet durch die gelbe Welle, umgewandelt.

© MPI für Mikrostrukturphysik

Wissenschaftler des Max-Planck-Instituts für Festkörperforschung in Stuttgart haben nun eine Lichtquelle entwickelt, die einen elektrischen Spannungspuls mithilfe eines einzelnen Moleküls in einen Lichtpuls umwandelt.

Dabei wirkt das Molekül wie ein transistorgesteuerter Lichtschalter, der es sogar erlaubt, die Intensität des Lichts zu regeln. Da sich das Licht mit dem molekularen Schalter äußerst schnell an- und ausschalten lässt, könnte die Lichtquelle als Blaupause für Nano-Bauelemente dienen, die elektrische Signale mit Gigahertz-Frequenz in optische Signale umwandeln.

Organische Farbstoffe bringen heute nicht mehr nur Farbe auf Tapeten, in Zeitschriften oder auf Kleider, wenn sie mit Licht angestrahlt werden. Inzwischen leuchten sie selbst in elektrischen Lichtquellen, nämlich in den organischen Leuchtdioden (OLEDs) etwa für die Bildschirme von Smartphones. Die Displays enthalten neben den eigentlichen Lichtquellen (Pixeln) zusätzlich aber immer noch Transistoren, mit denen sich deren Helligkeit regeln lässt. Beide Funktionen vereint ein Team des Max-Planck-Instituts für Festkörperforschung, des Max-Planck-EPFL Centers und des Karlsruhe Instituts für Technologie nun in einem einzigen Molekül.

Die Forscher um Klaus Kern, Direktor am Stuttgarter Max-Planck-Institut, konstruieren ihre Nanolampe mit integrierter Transistorsteuerung, indem sie ein Farbstoffmolekül auf einer Schicht aus Buckminster-Fullerenen – dabei handelt es sich um kugelige Kohlenstoff-Moleküle – platzieren. Die Schicht der Kohlenstoffkugeln überzieht einen Metallträger, in diesem Fall aus Gold, der als Elektrode dient. „Als zweite Elektrode über dem Farbstoff-Molekül verwenden wir die Spitze eines Rastertunnelmikroskops“, sagt Klaus Kuhnke. „Dafür eignet sich aber auch eine zweite dünne Metallschicht. „Allerdings konnten die Forscher die erstaunlichen Eigenschaften des einzelnen Moleküls nur entdecken, weil sie für ihre Studie eine bewegliche Spitze benutzten. Mit der Spitze rasterten sie nämlich die Oberfläche ab und maßen gleichzeitig das abgestrahlte Licht. „Dabei beobachteten wir, dass auf den Farbstoff-Molekülen Licht erzeugt wird“, so Kuhnke.

Die Spannung erzeugt zunächst Lichtwellen, die an der Metalloberfläche gefangen sind

Über eine elektrische Spannung zwischen dem Goldträger und der Spitze des Rastertunnelmikroskops (STM) sowie den Abstand zwischen den beiden elektrischen Kontakten, kontrollieren die Forscher nun das elektrische Feld an dem Molekül. Überschreitet diese 2,5 Volt pro Nanometer, wird die Lampe eingeschaltet. Das Molekül knipst das Licht aber nicht einfach nur an und aus. Vielmehr lässt sich die Lichtintensität mit seiner Hilfe über den sehr schmalen Bereich von einigen Millivolt kontinuierlich heller und dunkler regeln. Es funktioniert in diesem Bereich also ähnlich wie ein lichtemittierender Transistor.

Die elektrische Energie wird bei dem Schaltvorgang nicht direkt in Lichtenergie umgewandelt, sondern vermittelt durch sogenannte Plasmonen. Diese kann man sich als Lichtwellen vorstellen, die an der Metalloberfläche gefangenen sind und beispielsweise von einer Unebenheit auf der Oberfläche abgestrahlt werden können. Mit ihrer Hilfe könnte sich Information in Form von Licht auf engerem Raum übertragen oder verarbeiten lassen als mit Licht alleine. Denn Plasmonen können über Metallbahnen laufen, die schmaler als 100 Nanometer sind, während etwa Glasfasern mindestens halb so breit sein müssen wie die Wellenlänge des Lichts, das sie leiten.

Der Schaltvorgang dauert weniger als eine Milliardstel Sekunde

Das organische Molekül spielt bei der Erzeugung der gefangenen und abgestrahlten Lichtwellen auf der Metalloberfläche eine entscheidende Rolle: Eine minimale Änderung des elektrischen Feldes am Ort des Moleküls entscheidet darüber, ob das Licht erzeugt wird oder nicht. Das macht die Nanolampe interessant für die digitale Informationsübertragung mit Licht, bei ‚Licht an‘ für die Eins eines Datenbits und ‚Licht aus‘ für die Null steht. „Eine kleine Modulation des elektrischen Feldes an dem Molekül erzeugt eine Zeichenfolge, die als Licht abgestrahlt wird und eine Nachricht übermitteln kann“, sagt Klaus Kuhnke. Und weil die Lichtquelle oberhalb des Schwellenwertes bereits bei einer winzigen Spannungsänderung aufleuchtet, geht der Schaltvorgang auch sehr schnell vonstatten: Er dauert weniger als eine Milliardstel Sekunde, erlaubt also möglicherweise einmal eine Datenübertragung mit Bitraten im Gigahertz-Bereich.

Dass die Intensität des Lichts von nur einem einzigen Molekül gesteuert wird, ist dabei für die Schnelligkeit des Lichtschalters entscheidend. Mechanische Lichtschalter werden über Hebel betätigt und je wuchtiger dieser Hebel wird, umso aufwändiger ist es, den Schalter von einer Schaltposition in eine andere zu bewegen. In der Elektronik werden diese schwerfälligen Hebel durch unvermeidbare Kondensatoren, also Ladungsspeicher, gebildet, die einen Teil des Stroms verschlucken ohne damit Licht zu erzeugen. Je größer nun das Element wird, welches das Licht schalten soll, umso mehr Energie und Zeit ist erforderlich, um die „parasitären“ Kondensatoren aufzuladen. Hier hilft die Winzigkeit des Moleküls: Es kostet fast keine Energie mehr, die Umgebung eines einzelnen Moleküls von der Größe eines millionstel Millimeters um eine kleine Spannung von wenigen Millivolt aufzuladen – entsprechend schnell läuft der Schaltprozess ab. „Solch eine molekulare Lichtquelle verspricht damit, eines Tages einmal ein neues, effizientes Bauelement für die Informationsübertragung zu werden – zumal das erzeugte Licht zwar noch schwach, aber mit dem bloßen Auge bereits deutlich sichtbar ist“, sagt Klaus Kuhnke.


Ansprechpartner

 
Prof. Dr. Klaus Kern
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-1660
Fax: +49 711 689-1662
E-Mail: K.Kern@fkf.mpg.de
 

Dr. Klaus Kuhnke
Max-Planck-Institut für Festkörperforschung, Stuttgart
Telefon: +49 711 689-5247
Fax: +49 711 689-1662
E-Mail: k.kuhnke@fkf.mpg.de


Originalpublikation


Christoph Große, Alexander Kabakchiev, Theresa Lutz, Romain Froidevaux, Frank Schramm, Mario Ruben, Markus Etzkorn, Uta Schlickum, Klaus Kuhnke und Klaus Kern

Dynamic Control of Plasmon Generation by an Individual Quantum System

Nano Letters, online veröffentlicht 2. September 2014; doi: 10.1021/nl502413k

Prof. Dr. Klaus Kern | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8728611/nano_lichtquelle_plasmon_transistor

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise