Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Kamera für unsichtbare Felder

22.07.2016

Physiker vom Labor für Attosekundenphysik der LMU und des MPQ haben ein Elektronenmikroskop entwickelt, mit dem sie pro Sekunde Billionen Mal oszillierende elektromagnetische Felder sichtbar machen.

Elektromagnetische Felder sind der Motor unserer Elektronik. Sie verändern sich rasend schnell, sind unsichtbar und damit schwer zu fassen. Eine bessere Kenntnis dieser Felder in elektronischen Bauteilen, wie etwa Transistoren, ist allerdings notwendig, bevor die Elektronik der Zukunft Realität werden kann.


Dreidimensionale Darstellung der Veränderung eines elektromagnetischen Lichtfeldes, das sich um eine Mikroantenne gebildet hat. „Fotografiert“ wurde das Lichtfeld mit Elektronenpulsen.

Grafik: Dr. Peter Baum

Einen wichtigen Meilenstein dorthin haben nun die Ultrakurzzeitphysiker vom Labor für Attosekundenphysik (LAP) der Ludwig-Maximilians-Universität München (LMU) und des Max-Planck-Instituts für Quantenoptik (MPQ) erreicht. Sie haben ein Elektronenmikroskop gebaut, mit dem sie elektromagnetische Felder sichtbar machen und deren ultraschnelle Veränderungen aufzeichnen können.

Alle elektronischen Geräte des Alltags werden letztendlich von elektromagnetischen Feldern getrieben. Durch sie verschieben sich Elektronen und Ströme in Bauteilen wie etwa in Transistoren. Dort sorgen sie letztendlich für Datenfluss oder Speichervorgänge.

Eine bessere Kenntnis der elektromagnetischen Feldverläufe und ihrer ultraschnellen Veränderungen in elektronischen Bauteilen könnte die Elektronik der Zukunft effizienter gestalten. Ein Elektronenmikroskop zur Analyse elektromagnetischer Felder haben nun Physiker der Arbeitsgruppe „Ultrafast Electron Imaging“ des Labors für Attosekundenphysik der LMU und des MPQ entwickelt.

Das Elektronenmikroskop wird mit ultrakurzen Laserpulsen von wenigen Femtosekunden Dauer betrieben (eine Femtosekunde ist ein Millionstel einer milliardstel Sekunde). Diese Laserpulse erzeugen wiederum Elektronenpulse, die nur aus einzelnen Elektronen bestehen und durch das Einwirken von Terahertz-Strahlung weiter verkürzt werden. Diese Technologie haben die Münchner Physiker schon vorher entwickelt (Science 22. April 2016, doi: 10.1126/science.aae0003) und sie erlaubt die Erzeugung von Elektronenpulsen, die kürzer als eine halbe Schwingung einer Lichtwelle sind.

Mit diesen ultrakurzen Elektronenpulsen werden nun elektromagnetische Felder sichtbar gemacht. Im Experiment ließen die Physiker die Elektronenpulse auf eine Mikroantenne treffen. Diese Mikroantenne wurde zuvor durch Terahertz-Strahlung angeregt, sodass in ihrem Umkreis optische Effekte, also elektromagnetische Felder, entstanden. Gleichzeitig durchdrangen die kurzen Elektronenpulse die Antenne. An den elektromagnetischen Feldern wurden die Elektronenpulse gestreut und deren Ablenkung aufgezeichnet. Über die Ablenkung der Elektronenpulse erhielten die Forscher Auskunft über die räumliche Verteilung, die zeitliche Variation, die Richtung und die Polarisation des Lichts, das die Mikroantenne aussendete.

„Um solche elektromagnetischen Lichtfelder zu visualisieren, sind zwei Vorrausetzungen wichtig“, erklärt Dr. Peter Baum, der Leiter der Experimente. „Die Elektronenpulse müssen kürzer sein als ein Lichtzyklus. Und zudem muss die Durchgangszeit durch die zu untersuchende Struktur kürzer sein als ein Lichtzyklus.“ Die Elektronenpulse fliegen ungefähr mit halber Lichtgeschwindigkeit.

Mit ihrer erweiterten Elektronenmikroskopie haben die LAP-Physiker nun eine Grundlage geschaffen, selbst kleinste und schnellste elektromagnetische Felder exakt zu detektieren und damit besser zu verstehen, wie etwa Transistoren oder optische Schalter arbeiten und was in ihnen passiert.

Interessant ist die neue Technologie außerdem für die Entwicklung und Analyse von Metamaterialien. Metamaterialien sind künstliche Nanostrukturen, deren Durchlässigkeit für elektrische und magnetische Felder von der in der Natur üblichen grundlegend abweicht, so dass optische Phänomene entstehen, die sich mit herkömmlichen Stoffen niemals realisieren lassen. Metamaterialien eröffnen völlig neue Perspektiven in der Optik und Optoelektronik, und könnten zu wichtigen Bausteinen für lichtgetriebene Schaltkreise und Rechner der Zukunft werden. Mit ihrer Elektronenmikroskopie-Technologie tragen die LAP-Physiker dazu bei, dies alles besser zu verstehen und Realität werden zu lassen. Thorsten Naeser

Originalveröffentlichung:

A. Ryabov and P. Baum
Electron microscopy of electromagnetic waveforms
Science, 22. Juli 2016, Vol. 353 Issue 6297; doi: 10.1126/science.aaf8589

Kontakt:

Dr. Peter Baum
Ludwig-Maximilians-Universität München
Am Coulombwall 1
85748 Garching b. München
Telefon: +49 (0)89 / 289 -14102
E-Mail: peter.baum@lmu.de
www.ultrafast-electron-imaging.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau
17.11.2017 | Universität Ulm

nachricht Zwei verdächtigte Sterne unschuldig an mysteriösem Antiteilchen-Überschuss
17.11.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte