Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine heiße Alternative zum elektrischen Strom

20.10.2014

Fakultät für Physik der Universität Bielefeld erweitert Mitarbeit in bundesweitem Programm der Deutschen Forschungsgemeinschaft

Die Fakultät für Physik der Universität Bielefeld ist künftig an vier statt drei Projekten des Schwerpunktprogramms „Spin Caloric Transport“ (SpinCaT) der Deutschen Forschungsgemeinschaft beteiligt.


Die Physiker der Universität Bielefeld experimentieren mit Nanoschichten auf Chipträgern (Bild).

Foto: Universität Bielefeld

Die Wissenschaftler der Universität Bielefeld arbeiten an den physikalischen Grundlagen, um magnetische Signale mit Wärme zu erzeugen. Langfristig könnten auf der Basis zum Beispiel energiesparende Computer entwickelt werden. 2011 startete das Schwerpunktprogramm SpinCaT, das jetzt in die zweite Förderungsphase geht.

Die SpinCaT-Forschung in Bielefeld wird mit insgesamt 800.000 Euro gefördert. Angesiedelt ist sie am „Center for Spinelectronic Materials and Devices“ (CSMD, Zentrum für Spinelektronische Materialien und Geräte).

Elektronen besitzen einen Eigendrehimpuls, der sich Elektronenspin nennt. Dieser sorgt dafür, dass sich Elektronen wie kleine Magnete verhalten. Auch wenn sie ihre Position beibehalten, können sie ihren Elektronenspin an benachbarte Elektronen weitergeben.

Neuerdings kann der Transport dieser Elektronenspins gezielt mit Wärme ausgelöst werden. „Wärme fällt oft als Abfallprodukt an – zum Beispiel als Betriebsabwärme im Computer“, sagt Professor Dr. Günter Reiss. „Wir wollen Verfahren entwickeln, die Wärme nutzen, um Elektronenspins gezielt zu steuern“. Reiss leitet die Arbeitsgruppe „Dünne Schichten und Physik der Nanostrukturen“ im CSMD, die in vier von insgesamt rund 30 Projekten des Schwerpunktprogramms „SpinCaT“ forscht.

Moderne Elektronik basiert auf Elektronentransport, der durch elektrische Spannung erzeugt wird. Beim elektrischen Strom bewegen sich die Elektronen also durch einen elektrischen Leiter, etwa einen Kupferdraht. Die Bielefelder Physiker wollen aber den Elektronenspin verwenden und nicht den Transport der Elektronen selber, um neuartige Schaltungen zu bauen, die vielleicht sogar durch Wärme betrieben werden können. Der Transport von Elektronenspins geschieht, ohne dass die Elektronen sich selber bewegen.

Nur der Eigendrehimpuls wird von Elektron zu Elektron weitergegeben. Da also kein elektrischer Strom für so einen „Spinstrom“ nötig ist, können diese magnetischen Signale auch in Material erzeugt und weitergegeben werden, das keinen oder nur wenig elektrischen Strom leiten kann. „So entsteht ein reiner Spinstrom, bei dem Elektronenspins ohne elektrischen Strom übermittelt werden können“, sagt Reiss. Die Physiker nutzen dafür magnetische Isolatoren. Zu ihnen gehören zum Beispiel ultradünne Schichten, die aus Nickelferrit oder Eisengranat bestehen.

Dieses Prinzip kann verwendet werden, um beispielsweise Computerdaten zu übertragen. Computer nutzen die Werte „0“ und „1“ als Zahlensystem, um zu rechnen und Daten zu speichern. Der Eigendrehimpuls des Elektrons kann ebenfalls zwei bestimmte Richtungen haben. Um Computerdaten also per Elektronenspin zu übermitteln, wird eine Drehimpulsrichtung als „0“ festgelegt und die andere als „1“.

Weil die Elektronen sich selber in isolierenden Materialien nicht fortbewegen, verbraucht die Übertragung von Daten auf diese Art weitaus weniger Energie als der herkömmliche Elektronentransport. „Computer, die mit solchen Spin-Schaltkreisen arbeiten würden, sparen also von vornherein Energie. Sie könnten zudem nicht benötigte Wärme nutzen, um den Spin-Transport zu steuern“, sagt Dr. Timo Kuschel. Der Physiker gehört zur Arbeitsgruppe von Günter Reiss und leitet mit dem Professor und seinen Bielefelder Kollegen Dr. Andy Thomas und Dr. Jan-Michael Schmalhorst Projekte im SpinCaT-Programm.

Die Wissenschaftler der Universität Bielefeld konzentrieren sich auf die Grundlagenforschung zur Erzeugung und Manipulation von Spinströmen mit Wärme. Dafür entwickeln sie extrem dünne Schichten, die sie als magnetische Isolatoren einsetzen. Diese Nanoschichten analysieren sie mit einem Synchrotron, einer besonderen Art von Teilchenbeschleuniger.

Dafür besuchen sie Forschungseinrichtungen in Hamburg, Berlin, Grenoble (Frankreich) und Berkeley (USA). Für die Forschung in den SpinCaT-Projekten kooperieren sie zudem mit Arbeitsgruppen aus München, Regensburg, Braunschweig, Greifswald, Alabama (USA) und Sendai (Japan). Auf Einladung der Fakultät für Physik diskutierten Anfang Oktober rund 20 Physiker aus vier Ländern auf einer Tagung in der Universität Bielefeld über ihre Messungen und Analysen zu thermisch generierten Spinströmen.

Kontakt:
Prof. Dr. Günter Reiss, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-5411
E-Mail: reiss@physik.uni-bielefeld.de

Dr. Timo Kuschel, Universität Bielefeld
Fakultät für Physik
Telefon: 0521 106-5423
E-Mail: tkuschel@physik.uni-bielefeld.de

Weitere Informationen:

http://www.spincat.info

Jörg Heeren | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-bielefeld.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode zur Analyse von Supraleitern
24.10.2017 | Ruhr-Universität Bochum

nachricht Bildung von Magma-Ozeanen auf Exoplaneten erforscht
24.10.2017 | Österreichische Akademie der Wissenschaften

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 65 neue genetische Risikomarker für Brustkrebs entdeckt

Manche Familien sind häufiger von Brustkrebs betroffen als andere. Dies kann bislang nur teilweise durch genetische Risikomarker erklärt werden. In einem weltweiten Verbund haben Forscher nun 65 weitere Erbgutvarianten identifiziert, die zum Brustkrebsrisiko beitragen. Die Studie, an der auch Wissenschaftler vom Deutschen Krebsforschungszentrum und dem Universitätsklinikum Heidelberg beteiligt waren, wurde in der Fachzeitschrift Nature veröffentlicht. Die Forscher erwarten, dass die Ergebnisse dazu beitragen, Screeningprogramme und die Früherkennung von Brustkrebs zu verbessern.

Seit Angelina Jolies medienwirksamer Entscheidung, sich vorbeugend die Brüste entfernen zu lassen, ist der genetische Hintergrund von Brustkrebs auch einer...

Im Focus: Salmonellen als Medikament gegen Tumore

HZI-Forscher entwickeln Bakterienstamm, der in der Krebstherapie eingesetzt werden kann

Salmonellen sind gefährliche Krankheitserreger, die über verdorbene Lebensmittel in den Körper gelangen und schwere Infektionen verursachen können. Jedoch ist...

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Konferenz IT-Security Community Xchange (IT-SECX) am 10. November 2017

23.10.2017 | Veranstaltungen

Die Zukunft der Luftfracht

23.10.2017 | Veranstaltungen

Ehrung des Autors Herbert W. Franke mit dem Kurd-Laßwitz-Sonderpreis 2017

23.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fettstoffwechsel beeinflusst Genaktivität

24.10.2017 | Biowissenschaften Chemie

Forscher der Universität Hamburg entdecken Mechanismus zur Verdopplung von Pflanzengenomen

24.10.2017 | Biowissenschaften Chemie

Bakterielle Toxine im Darm

24.10.2017 | Biowissenschaften Chemie