Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine „Flipper-Maschine“ für Atome und Photonen

16.04.2015

Physiker vom MPQ, Caltech und ICFO haben ein neues Konzept entwickelt, durch Kombination von Nano-Photonik mit ultrakalten Atomen Quanten-Vielteilchensysteme zu simulieren und neue Materiezustände zu erzeugen.

Ultrakalte Atome in optischen Gittern, die durch die kreuzweise Überlagerung von Laserstrahlen entstehen, haben sich bereits als die meist versprechenden Werkzeuge für die Simulation und das Verständnis von Vielteilchensystemen wie Festkörperkristallen herausgestellt, zum Beispiel in Bezug auf deren elektrische oder magnetische Eigenschaften.


Anschauliche Darstellung eines dielektrischen nano-photonischen

Gitters, mit dem Atome eingefangen und miteinander zur Wechselwirkung gebracht werden können. (Grafik: MPQ, Abteilung Theorie)

Optische Gitter im freien Raum lassen aber nur atomare Abstände von mindestens rund 400 Nanometern und Wechselwirkungen mit kurzer Reichweite zu. Um diese Einschränkungen zu umgehen, hat jetzt ein Team um Prof. Ignacio Cirac (MPQ, Garching) und Prof. Jeff Kimble (California Institute of Technology, Pasadena, USA) ein neues Konzept entwickelt, das die Vorteile der Physik ultrakalter Atome und der Nano-Photonik integriert.

Damit sollten sich, so die Vorhersage, 10mal kleinere Gitterkonstanten und Wechselwirkungen mit größerer Reichweite realisieren lassen (Nature Photonics, AOP, 6. April 2015). Die Autoren untersuchen dabei die Möglichkeiten, mit Hilfe dielektrischer Materialien mit Nano-Strukturen, sogenannten photonischen Kristallen, Atome dichter aneinander zu bringen und über geführte Lichtmoden in Wechselwirkung treten zu lassen.

Als Folge davon werden die Energieskalen des Systems sowie die Reichweiten der Wechselwirkungen größer, was die Erforschung neuer Formen von Quantenvielteilchenmaterie erlaubt.

Die Grundidee des Vorschlags besteht darin, den Brechungsindex einer dielektrischen Schicht periodisch zu modulieren, indem in einem gitterartigen Muster entweder kleine Löcher in die Schicht hineingebohrt oder kleine Stifte auf deren Oberfläche angebracht werden. Die Autoren zeigen, wie sich hier durch eine Kombination von optischen Kräften und Vakuumfeldern Gitter mit atomaren Abständen von etwa 50 Nanometern, also rund 10mal kleiner als bei optischen Gittern, erzeugen lassen.

„Mit diesen „subwavelength“-Gittern können wir im Prinzip die gleichen Vielteilchen-Phänomene untersuchen wie mit den optischen Gittern, die im Vakuum durch Licht erzeugt werden“, erklärt Dr. Alejandro González-Tudela, Wissenschaftler in der Abteilung Theorie von Prof. Cirac und Erstautor der Veröffentlichung. „Der entscheidende Unterschied und Vorteil unseres Vorschlags liegt darin, dass die Atome viel dichter aneinander sitzen. So erzielen wir höhere Tunnelraten und Wechselwirkungsenergien für die Simulation von Quanten-Vielteilchensystemen. Und das bedeutet, dass wir die hohen Anforderungen an die Kühlung von Atomen ein wenig lockern können.“

Doch die Möglichkeit, neue Physik zu machen, beruht nicht nur auf der kleinen Gitterkonstante. Vielmehr erlaubt es die Geometrie dieser dünnen dielektrischen Schicht, das einfallende Licht einzufangen und zu führen. Wenn nun ein einlaufendes Photon auf ein eingefangenes Atom trifft, hat es mit ihm starke Wechselwirkung und prallt dann von ihm ab. Aber es fliegt danach nicht in den freien Raum, sondern bleibt im Wellenleiter, bis es auf das nächste Atom trifft und mit ihm wechselwirkt, und so geht es immer weiter.

„Unsere Analyse zeigt, dass wir auf diese Weise Wechselwirkungen zwischen den Atomen erhalten, die nicht durch Hüpfen (wie bei den optischen Gittern im freien Raum), sondern durch den direkten Austausch von Photonen zustande kommen“, sagt Alejandro González-Tudela.

„Das Ergebnis ist ein zweidimensionaler Festkörper, in dem die Atome nicht durch Gitterschwingungen, wie in gewöhnlicher Materie, sondern durch Photonen zusammen gehalten werden. Damit bekommen wir eine neue Qualität der Licht-Materie-Wechselwirkung, mit der Möglichkeit, die Stärke und Reichweite der Wechselwirkungen gezielt zu formen und einzustellen. Dies gäbe uns Zugang zu einer Vielzahl von Phänomenen, wie etwa dem Quantenmagnetismus oder der Spin-Spin-Wechselwirkung über den Austausch von Photonen.“ Olivia Meyer-Streng

Originalveröffentlichung
A. González-Tudela, C.-L. Hung, D. E. Chang, J. I. Cirac, and H. J. Kimble
Subwavelength vacuum lattices and atom-atom interactions in photonic crystals
Nature Photonics, 6. April 2015, Advanced Online Publication

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -705 /-736
Telefax: +49 (0)89 / 32 905 -336
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Alejandro González-Tudela
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1, 85748 Garching
Telefon: +49 (0)89 / 32 905 -127
E-Mail: alejandro.gonzalez-tudela@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Sterngeburt in den Winden supermassereicher Schwarzer Löcher
28.03.2017 | ESO Science Outreach Network - Haus der Astronomie

nachricht Das anwachsende Ende der Ordnung
27.03.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Von Agenten, Algorithmen und unbeliebten Wochentagen

28.03.2017 | Unternehmensmeldung

Hannover Messe: Elektrische Maschinen in neuen Dimensionen

28.03.2017 | HANNOVER MESSE

Dimethylfumarat – eine neue Behandlungsoption für Lymphome

28.03.2017 | Medizin Gesundheit