Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Eine Einbahnstraße für Licht

07.11.2017

Wissenschaftler vom MPQ und Caltech haben einen detaillierten experimentellen Aufbau konzipiert, zweidimensionale topologische Isolatoren mit Hilfe von klassischen optischen Netzwerken zu verwirklichen.

Im vergangenen Jahrzehnt hat eine neue Art von Materialien in zunehmendem Maße die Aufmerksamkeit auf sich gezogen: die sogenannten topologischen Isolatoren. Diese Materialien zeichnen sich durch eine ganz besondere Eigenschaft aus: sie verhalten sich im Innern wie ein Isolator, besitzen aber leitende Zustände an ihren Grenzen.


Schema des optischen Netzwerks

Grafik: aus der Originalveröffentlichung

Da diese Zustände „topologisch geschützt“ sind (siehe unten), sind sie sehr robust gegenüber Verunreinigungen, und elektrische Ströme können fast widerstandsfrei fließen. Das macht diese Materialien außerordentlich interessant für Anwendungen in der Quantenkommunikation und Quanteninformationsverarbeitung.

Nun haben Dr. Tao Shi (z.Z. Chinesische Akademie der Wissenschaften, Peking) und Prof. Ignacio Cirac vom Max-Planck-Institut für Quantenoptik (Garching) zusammen mit Prof. Jeff Kimble vom California Institute of Technology (Pasadena, USA) ein detailliertes Konzept entwickelt, einen zweidimensionalen topologischen Isolator mit einem klassischen optischen Netzwerk zu verwirklichen (Proceedings of the National Academy of Sciences of the United States of America, AOP 10. Oktober 2017).

„In diesem Netzwerk spielen die Lichtmoden die Rolle der elektronischen Zustände in einer zweidimensionalen Kristallschicht“, erklärt Dr. Tao Shi. „Die Erzeugung von chiralen Lichtmoden an den Kanten wird es vielleicht ermöglichen, einen elektromagnetischen Wellenleiter zu bauen, der Licht nur in einer Richtung durchlässt, während die entgegengesetzte Richtung nicht erlaubt ist.“

Festkörperkristalle sind charakterisiert durch ihre spezifische Bandstruktur: Bei einem Isolator ist das vollbesetzte Valenzband durch eine große „verbotene“ Zone vom Leitungsband getrennt. Dies gilt jedoch nur für Proben mit unendlicher Ausdehnung. Bei kleinen, klar abgegrenzten Kristallen oder Schichten unterscheiden sich die elektronischen Zustände an den Oberflächen bzw. Kanten von denen im Innern.

Manchmal befinden sie sich sogar in der Mitte der Bandlücke. Da die Form der Bandstruktur mathematisch durch topologische Zahlen gekennzeichnet wird, nennt man solche Systeme auch kurz „topologische Isolatoren“. Die Chiralität der Zustände an den Grenzen ist eng an den Elektronspin gekoppelt und infolgedessen durch die Zeitumkehr-Symmetrie geschützt: d.h., eine Richtungsumkehr würde ein Umklappen des Spins implizieren.

Für eine bestimmte Stoffklasse mit „nicht-trivialen“ topologischen Zahlen ist das aber nicht erlaubt. Deshalb sind diese Zustände hier geschützt und robust gegenüber Verunreinigungen und Verformungen, solange die Störungen klein sind. Bei einer bestimmten Klasse von zweidimensionalen topologischen Isolatoren lässt sich auch der Quanten-Spin-Hall-Effekt (QSHE) beobachten. Intuitiv gesprochen beschreibt der Effekt das Phänomen, dass Elektronen mit unterschiedlichem Spin entgegengesetzt gerichteten Magnetfeldern ausgesetzt sind.

Abweichend von früheren Entwürfen schlagen die Wissenschaftler in ihrer Arbeit ein optisches Netzwerk vor, das aus passiven Elementen wie Glasfaser, Strahlteilern und Wellenplättchen besteht. Dadurch werden Verluste im System weitgehend reduziert. Indem sie für die Netzknoten „schlechte“ Resonatoren (also solche mit hoher Dämpfung) verwenden, dehnen sie die topologische Bandlücke auf den gesamten Spektralbereich freier Moden aus. Dadurch können die Lichtmoden an den Kanten wesentlich länger fortbestehen. Darüber hinaus führt das Wechselspiel von Kerr-Nichtlinearität und Topologie zu der Erzeugung von gequetschten Kanten-Moden.

„Das optische Analogon eines topologischen Isolators ebnet den Weg, einen unidirektionalen Wellenleiter zu bauen“, führt Dr. Shi aus. „Abgesehen davon – unser eigentliches Ziel ist es, in diesem photonischen System den fraktionierten Quanten-Hall-Effekt umzusetzen. Dazu müssen wir mit Hilfe von Atomen eine starke Photon-Photon-Wechselwirkung induzieren. Wir möchten aber auch exotische topologische Phasen aufdecken, die in gewöhnlicher kondensierter Materie gar nicht vorkommen.“ Olivia Meyer-Streng

Originalveröffentlichung:

Tao Shi, H. Jeff Kimble, and J. Ignacio Cirac
Topological phenomena in classical optical networks
PNAS 2017; published ahead of print October 10, 2017, doi:10.1073/pnas.1708944114

Kontakt:

Dr. Tao Shi
Associate Professor
Institut für Theoretische Physik
Chinesische Akademie der Wissenschaften
Zhong Guan Cun East Street 55
P. O. Box 2735, Peking 100190, Volksrepublik China
Telefon: +86 010 / 62 582 - 513
Telefax: +86 010 / 62 582 - 587
E-Mail: tshi@itp.ac.cn

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse-und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

nachricht Quanten-Übertragung auf Knopfdruck
14.06.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: ALMA entdeckt Trio von Baby-Planeten rund um neugeborenen Stern

Neuartige Technik, um die jüngsten Planeten in unserer Galaxis zu finden

Zwei unabhängige Astronomenteams haben mit ALMA überzeugende Belege dafür gefunden, dass sich drei junge Planeten im Orbit um den Säuglingsstern HD 163296...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Künstliche Intelligenz – Schafft der Mensch seine Arbeit ab?

15.06.2018 | Veranstaltungen

Internationale Konferenz zur Asteroidenforschung in Garching

13.06.2018 | Veranstaltungen

Meteoriteneinschläge und Spektralfarben: HITS bei Explore Science 2018

11.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

A sprinkle of platinum nanoparticles onto graphene makes brain probes more sensitive

15.06.2018 | Materials Sciences

100 % Organic Farming in Bhutan – a Realistic Target?

15.06.2018 | Ecology, The Environment and Conservation

Perovskite-silicon solar cell research collaboration hits 25.2% efficiency

15.06.2018 | Power and Electrical Engineering

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics