Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Einblicke ins Atom

23.01.2017

Physiker der Universität Jena und des Helmholtz-Instituts Jena stellen neuen Mechanismus zur Untersuchung von Atomkernen vor

Es ist nicht leicht, die kleinsten Bausteine der Materie in Augenschein zu nehmen. Während sich Atome mit einer Größe von einigen Pikometern (Billionstel Meter) mit Rastertunnelmikroskopen noch in ihren Umrissen sichtbar machen lassen, sind Nahaufnahmen der Atomkerne auf direktem Wege bislang ganz und gar unmöglich:


Die theoretischen Physiker Dr. Andrey Voltka (l.) und Prof. Dr. Stephan Fritzsche von der Uni Jena haben eine Methode entwickelt, mit der sie Atomkerne gezielt anregen und untersuchen können.

Foto: Anne Günther/FSU

Wie eine dichte Atmosphäre oftmals den Blick auf ferne Planeten verhüllt, so verdeckt eine Wolke von Elektronen, die sich um den Atomkern bewegen, die Sicht ins Innere eines Atoms. „Die Elektronenhülle bestimmt nicht nur die Festigkeit und chemischen Bindungen aller uns umgebenden Stoffe, sie ist auch wesentlich größer als der Atomkern“, sagt Prof. Dr. Stephan Fritzsche von der Friedrich-Schiller-Universität Jena. Ihr Durchmesser beträgt etwa das Hunderttausendfache des Durchmessers des Atomkerns. Um die Kerne dennoch direkt zu erreichen, müssen sich die Forscher daher etwas einfallen lassen.

Und genau das haben Prof. Fritzsche und seine Kollegen getan. Das Team um den theoretischen Physiker von der Universität Jena und dem Helmholtz-Institut Jena stellt in der renommierten Fachzeitschrift „Physical Review Letters“ eine Methode vor, mit der die Forscher den Schleier der Elektronenwolke lüften und die Atomkerne gezielt anregen können. Dabei gelingt es ihnen nicht nur die Elektronenwolke zu durchdringen; sie nutzen die eigenwilligen Sprünge der Elektronen sogar, um neue Kernzustände zu ermöglichen (DOI: 10.1103/PhysRevLett.117.243001).

Grundlage der Untersuchungsmethode ist die sogenannte Zwei-Photonen-Emissionsspektroskopie. „Dazu schickt man elektromagnetische Strahlung in eine Probe des zu untersuchenden Elementes“, erläutert PD Dr. Andrey Volotka aus Fritzsches Arbeitsgruppe, der Erstautor der aktuellen Studie ist. Die Elektronen in der Atomhülle werden von der Strahlung angeregt und gehen in einen energetisch höheren Zustand über, in dem sie allerdings nur für sehr kurze Zeit verweilen und von wo sie anschließend in ihren ursprünglichen Zustand zurückfallen. Jedes angeregte Atom gibt dabei seine Energie in Form zweier Lichtteilchen (Photonen) wieder ab.

„Dem von uns vorgeschlagenen Mechanismus zufolge wird eines dieser Photonen jedoch vom Atomkern absorbiert und regt diesen selbst an“, so Andrey Volotka. Diese Anregung des Atomkerns lässt sich – ebenso wie die des verbleibenden zweiten Photons – spektroskopisch nachweisen. Die beobachtbaren Signale in den Photonenspektren geben den Forschern Aufschluss über die Struktur des Atomkerns und dessen Wechselwirkung mit den Elektronen. „Damit können sogenannte isomere Zustände der Atomkerne bestimmt werden, die vergleichsweise langlebig sind“, nennt Prof. Fritzsche einen Vorteil der Methode.

„Langlebig“ bedeutet für die Physiker in diesem Fall von Bruchteilen einer Sekunde bis hin zu mehreren Minuten. Die in gängigen Stoßexperimenten angeregten Kernzustände haben dagegen typische Lebensdauern im Attosekundenbereich.

Bisher ist dieser neue Mechanismus allerdings nur ein theoretischer Vorschlag. Die Jenaer Physiker konnten diesen aber gemeinsam mit Kollegen aus Braunschweig, Darmstadt und Dresden bereits in Computersimulationen bestätigen. „Das ist in erster Linie Grundlagenforschung“, macht Prof. Fritzsche deutlich. Vielleicht, so der Physiker, lassen sich die Erkenntnisse jedoch eines Tages auch nutzbringend anwenden: etwa in Form hochpräziser „Atomuhren“, die dann auf Kernübergängen beruhen und eine nennenswert höhere Präzision versprechen.

Original-Publikation:
Volotka A.V. et al. Nuclear Excitation by Two-Photon Electron Transition. Physical Review Letters, DOI: 10.1103/PhysRevLett.117.243001

Kontakt:
Prof. Dr. Stephan Fritzsche
Theoretisch-Physikalisches Institut der Friedrich-Schiller-Universität Jena
Helmholtz-Institut Jena
Fröbelstieg 3, 07743 Jena
Tel.: 03641 / 947606
E-Mail: stephan.fritzsche[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas
19.09.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern
15.09.2017 | Max-Planck-Institut für Quantenoptik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik