Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wassertropfen als Modell für das Wechselspiel von Haftreibung und Adhäsion

30.06.2016

Physiker haben an der Universität Zürich ein System entwickelt, mit dem sie Adhäsion und Haftreibung eines Wassertropfens auf einer festen Oberfläche elektrisch hin und her schalten können. Die Spannungsänderung äussert sich makroskopisch im Kontaktwinkel zwischen Tropfen und Oberfläche. Zurückführen lässt sich dieser Effekt auf die Veränderung der Oberflächenbeschaffenheit im Nanometerbereich.

Wie kommt es, dass sich ein Gecko kopfüber an einer Decke fortbewegen kann? Zwei Mechanismen sind dafür verantwortlich: Die Adhäsion durch Milliarden feinster Härchen an seinen Füssen lässt ihn an Decken und Wänden kleben. Sobald sich der Gecko bewegt, verlässt er sich auf die Haftreibung. Die Änderung von Adhäsion und Haftreibung auf der makroskopischen Ebene äussert sich auf der Nanometerskala durch die Änderung der Kräfte, die zwischen Atomen und Molekülen wirken.


Elektrochemie in einem Tropfen: Überlagerung von 7 dynamischen Kontaktwinkelmessungen zwischen Wassertropfen und Oberfläche; Durchmesser vertikale Kapillare 0,85 mm.

UZH


Bienenwabenförmiges Nanomesh: Bornitrid-Struktur aus Stickstoff (grün) und Bor (orange) auf Rhodium (grau); Wabenabstand 3,2 nm.

Marcella Iannuzzi, UZH & Ari Seitsonen, ENS Paris

Wie ein Wassertropfen eine bienenwabenförmige Struktur berührt

Einem internationalen Forscherteam unter der Leitung von Thomas Greber vom Physik-Institut der Universität Zürich ist es gelungen, die Art und Weise, wie ein Flüssigkeitstropfen auf einer festen Oberfläche haftet, hin und her zu schalten.

Dies geschieht durch die Veränderung der elektrischen Spannung, die an einen Wassertropfen angelegt wird. Die Oberfläche, auf welcher der Tropfen liegt, besteht aus einem Material genannt Nanomesh. Dabei handelt es sich um eine einzelne Bornitrid-Schicht auf metallischem Rhodium. Die Struktur hat die Form einer Bienenwabe mit einer Wabentiefe von 0,1 Nanometern und einem Wabenabstand von 3,2 Nanometern.

Makroskopisch äussert sich die Änderung der elektrischen Spannung in der Änderung des Kontaktwinkels zwischen Tropfen und Nanomesh-Oberfläche. Mit Kontakt- oder Benetzungswinkel bezeichnet man den Winkel, den ein Flüssigkeitstropfen zur Oberfläche eines Feststoffs bildet. Messen lässt sich dieser Winkel mit Hilfe von Fotografien im Gegenlicht.

Veränderung der Oberflächenstruktur ändert den Kontaktwinkel des Tropfens

Auf der Nanometerskala geschieht durch die Spannungsänderung Folgendes: Die Stickstoffbindungen zum Rhodium werden durch Wasserstoff-Rhodium-Bindungen ersetzt, wodurch sich die Nanomesh-Struktur auflöst. Wie stark der Stickstoff des Bornitrids an die Rhodium-Oberfläche bindet, ist abhängig von dessen Abstand und Richtung zum nächsten Rhodium-Atom.

Und dies bestimmt die Wabentiefe der Bornitrid-Schicht. Ändert sich die Spannung, lagert sich Wasserstoff zwischen Bornitrid- und Rhodium-Schicht, was dazu führt, dass die wabenförmige Bornitrid-Struktur flach wird. Mittels Tunnelmikroskopie lässt sich dieser nanoskopische Effekt – die Veränderung der Oberflächenbeschaffenheit des Nanomesh – in der Flüssigkeit nachweisen.

«Das Zusammenspiel zwischen der Makro- und der Nano-Welt zu verstehen und zu kontrollieren ist die eigentliche Herausforderung in der Nanowissenschaft», betont Greber. Denn dabei geht es um die Überbrückung von sechs Längengrössenordnungen – von Millimeter (10-3 m) zu Nanometer (10-9 m) – also einem Faktor von einer Million. «Unser Modellsystem des elektrisch schaltbaren Nanomesh und dem beobachtbaren Kontaktwinkel eines Tropfens erlaubt es, das fundamentale Phänomen der Reibung von Flüssigkeiten an Oberflächen genauer zu verstehen. Dies dürfte helfen, um Probleme wie sie zum Beispiel bei der Schmierung auftreten, besser lösen zu können.» Die Forschungsarbeit erscheint in der neuen Ausgabe der renommierten Fachzeitschrift Nature – auf der Titelseite.

Interessant ist das neue System einerseits für die Biologie. Die Anwendung dieses Effekts sollte es ermöglichen, die Adhäsion und Wanderung von Zellen kontrolliert zu steuern. Dadurch lassen sich Aspekte wie die Zellmigration oder die Bildung komplexer mehrzelliger Strukturen mit neuen wissenschaftlichen Ansätzen erforschen. Denkbar sind andererseits technologische Anwendungen wie Kapillarpumpen, bei denen die Kapillarhöhe durch die elektrische Spannung kontrolliert werden kann oder Mikrokapillaren, bei denen sich der Strömungswiderstand steuern lässt.

Literatur:
Stijn F. L. Mertens, Adrian Hemmi, Stefan Muff, Oliver Gröning, Steven De Feyter, Jürg Osterwalder, Thomas Greber. Switching stiction and adhesion of a liquid on a solid. Nature. June 30, 2016.
DOI: 10.1038/nature18275

Zur Studie
Die Forschungsergebnisse entstanden im Rahmen des Sinergia-Programms des Schweizerischen Nationalfonds (SNF). Der SNF fördert mit diesem Instrument die Zusammenarbeit von mehreren Forschungsgruppen, die interdisziplinär und mit Aussicht auf bahnbrechende Erkenntnisse forschen. Beteiligt waren neben der Universität Zürich die Katholieke Universiteit Leuven, die Technische Universität Wien und die Empa.

Kontakt:
Prof. Dr. Thomas Greber
Physik-Institut
Universität Zürich
+41 44 635 57 44
E-Mail: greber@physik.uzh.ch

Weitere Informationen:

http://www.media.uzh.ch/de/medienmitteilungen/2016/adhaesion-haftreibung.html

Kurt Bodenmüller | Universität Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht Magnetische Kontrolle per Handzeichen: Team entwickelt elektronische „Haut“ für virtuelle Realität
22.01.2018 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics