Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Transistorverstärker für einzelne Lichtquanten

28.07.2014

Wissenschaftlerteam am MPQ realisiert mit ultrakaltem Quantengas eine 20fache Signalverstärkung für einzelne Photonen.

Über große Entfernungen werden Daten heute üblicherweise mit Hilfe von Licht in Glasfaserkabeln transportiert. Dies ermöglicht hohe Übertragungsgeschwindigkeiten bei einem gleichzeitig geringen Verlust an Leistung.


Durch Anregung eines Rydberg-Zustandes in einer Wolke aus ultrakalten Rubidium-Atomen reduziert ein einzelnes Photon (roter Wellenzug) die Transmission eines Laserpulses um 20 Lichtquanten. (Foto: MPQ, Abteilung Quantendynamik)

Seit langem wird daran gearbeitet, auch die Verarbeitung der Daten rein optisch zu gestalten, mit optischen Transistoren und optischen Logikgattern. Vor allem für die Übertragung von Quanteninformation ist dies von großem Interesse, denn hier werden die Informationen oft in schwachen Lichtpulsen, im Grenzfall einem einzigen Photon, gespeichert.

Einem Team um Prof. Gerhard Rempe, Leiter der Abteilung Quantendynamik und Direktor am Max-Planck-Institut für Quantenoptik, ist es nun gelungen, mit einer ultrakalten Wolke aus Rubidium-Atomen einen optischen Transistor zu realisieren, der Signaländerungen von nur einem Lichtquant auf das 20fache verstärkt (PRL, 28. Juli 2014).

Der Grad der Verstärkung ist das entscheidende Leistungsmerkmal eines klassischen Transistors. Er gibt an, wie stark sich Änderungen eines Eingangssignals auf das Ausgangssignal auswirken; eine nennenswerte Verstärkung ist die Voraussetzung dafür, das Ausgangssignal ohne Signalabschwächung auf mehrere Transistoren zu verteilen und so komplexe digitale Schaltkreise aufzubauen.

Bei einem optischen Transistor ist das Eingangssignal ein Lichtpuls, der sogenannte Gatter-Puls, der die Durchlässigkeit eines „Mediums“ für einen zweiten sogenannten Target-Puls bestimmt. Dieses Medium wird in dem hier beschriebenen Experiment durch eine Wolke aus rund 150 000 Rubidium-Atomen dargestellt, die in einer aus zwei Laserstrahlen gebildeten Dipolfalle bei einer Temperatur von ca. 0,30 Mikrokelvin (das ist dicht oberhalb des absoluten Temperaturnullpunktes, Null Kelvin entspricht minus 273 Grad Celsius) mehrere Sekunden lang festgehalten werden kann.

Der Effekt der Elektromagnetisch Induzierten Transparenz (EIT), bei der ein Kontrolllaser die Wechselwirkung mit dem schwachen Lichtpuls steuert, macht die atomare Wolke für Lichtpulse bestimmter Frequenzen durchlässig.

Die atomare Wolke wird nun mit zwei Lichtpulsen gleicher Farbe (795 nm) bestrahlt, die in einem Abstand von zwei Mikrosekunden aufeinander folgen. Der erste Lichtpuls – der sogenannte Gatter-Puls – ist extrem schwach und enthält im Mittel weniger als ein Photon. Zusammen mit dem Kontrolllaser versetzt er ein Atom in einen hochangeregten Rydberg-Zustand, bei dem ein Elektron sehr weit vom Atomkern entfernt ist.

Diese einzelne Anregung hat eine weitreichende Wirkung: Allein durch die Gegenwart des Rydberg-Atoms verschieben sich die entsprechenden Energieniveaus aller anderen Atome in dem Quantengas. Der zweite Lichtpuls, der weit intensiver als der – in Form einer Rydberg-Anregung gespeicherte – Gatter-Puls ist, hat nun für die Atome nicht mehr die passende Farbe und wird daher von den Atomen abgeblockt.

Dass sich die Lichtdurchlässigkeit einer Wolke aus Rubidium-Atomen mit einzelnen Photonen ein- und ausschalten lässt, hat das Team von Prof. Rempe bereits vor einigen Monaten demonstriert (PRL, 18.2.2014), doch ließ sich der Effekt damals nur unter einigen Einschränkungen hinsichtlich Dauer und Intensität des Target-Pulses erzielen.

„Die entscheidende Neuerung bei diesem Experiment war, dass der Kontrolllaser des Target-Pulses eine andere Wellenlänge hat als der Gatter-Kontrolllaser“, führt Dr. Stephan Dürr, leitender Wissenschaftler am Experiment, aus. „So verhindern wir, dass der Target-Puls an den Gatter-Puls koppeln und diesen auslesen kann, selbst bei relativ langen Pulsdauern.“ Eine weitere Änderung bestand darin, die Rydberg-Zustände gezielt so auszuwählen, dass eine Förster-Resonanz auftritt, bei der Anregungsenergie strahlungslos und sehr effizient zwischen benachbarten Atomen übertragen werden kann.

„Die Förster-Resonanz verstärkt den Effekt der Rydberg-Blockade, die ja Ursache für das Abstoppen des Target-Pulses ist“, erklärt Daniel Tiarks, Doktorand am Experiment. „Darüber hinaus ist bei den hier gewählten Hauptquantenzahlen für die Rydberg-Zustände auch die Selbstblockade der Photonen in dem Target-Puls kleiner als in unserem früheren Experiment. Mit all diesen Maßnahmen konnten wir die Dauer der Target-Pulse um zwei Größenordnungen, auf rund 200 Mikrosekunden steigern.“

Durch Vergleich der Intensitäten der ausgelesenen Target-Pulse mit und ohne voraus gegangenem Gatter-Puls (aus nur einem Photon) konnte die jeweils erfolgte Reduzierung des Target-Signals bestimmt werden. „Bei der Förster-Resonanz können wir eine Abschwächung des Signals um 20 Photonen, also eine Verstärkung von 20 beobachten“, erläutert Stephan Dürr.

„Dies ermöglicht es, – zumindest im Prinzip – solche Transistoren zu kaskadieren und damit komplizierte Rechenaufgaben auszuführen. Darüber hinaus konnten wir bereits jetzt experimentell zeigen, dass wir wegen der hohen Verstärkung im Stande sind, schon mit einem einzigen Schuss nachzuweisen, ob in der atomaren Wolke eine Rydberg-Anregung abgespeichert ist, und zwar ohne sie zu zerstören.“ Olivia Meyer-Streng

Originalveröffentlichung:
Daniel Tiarks, Simon Baur, Katharina Schneider, Stephan Dürr and Gerhard Rempe
Single-Photon Transistor using a Förster-Resonance
Physical Review Letters, 28 July 2014

Kontakt:

Prof. Dr. Gerhard Rempe
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -701 /Fax: -311
E-Mail: gerhard.rempe@mpq.mpg.de

Dipl. Phys. Daniel Tiarks
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -397
E-Mail: daniel.tiarks@mpq.mpg.de

Dr. Stephan Dürr
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -291 /Fax: -311
E-Mail: stephan.duerr@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de 

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Methode für die Datenübertragung mit Licht
29.05.2017 | Leibniz-Institut für Photonische Technologien e. V.

nachricht Schnell wachsende Galaxien könnten kosmisches Rätsel lösen – zeigen früheste Verschmelzung
26.05.2017 | Max-Planck-Institut für Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode für die Datenübertragung mit Licht

Der steigende Bedarf an schneller, leistungsfähiger Datenübertragung erfordert die Entwicklung neuer Verfahren zur verlustarmen und störungsfreien Übermittlung von optischen Informationssignalen. Wissenschaftler der Universität Johannesburg, des Instituts für Angewandte Optik der Friedrich-Schiller-Universität Jena und des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) präsentieren im Fachblatt „Journal of Optics“ eine neue Möglichkeit, glasfaserbasierte und kabellose optische Datenübertragung effizient miteinander zu verbinden.

Dank des Internets können wir in Sekundenbruchteilen mit Menschen rund um den Globus in Kontakt treten. Damit die Kommunikation reibungslos funktioniert,...

Im Focus: Lässt sich mit Boten-RNA das Immunsystem gegen Staphylococcus aureus scharf schalten?

Staphylococcus aureus ist aufgrund häufiger Resistenzen gegenüber vielen Antibiotika ein gefürchteter Erreger (MRSA) insbesondere bei Krankenhaus-Infektionen. Forscher des Paul-Ehrlich-Instituts haben immunologische Prozesse identifiziert, die eine erfolgreiche körpereigene, gegen den Erreger gerichtete Abwehr verhindern. Die Forscher konnten zeigen, dass sich durch Übertragung von Protein oder Boten-RNA (mRNA, messenger RNA) des Erregers auf Immunzellen die Immunantwort in Richtung einer aktiven Erregerabwehr verschieben lässt. Dies könnte für die Entwicklung eines wirksamen Impfstoffs bedeutsam sein. Darüber berichtet PLOS Pathogens in seiner Online-Ausgabe vom 25.05.2017.

Staphylococcus aureus (S. aureus) ist ein Bakterium, das bei weit über der Hälfte der Erwachsenen Haut und Schleimhäute besiedelt und dabei normalerweise keine...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: Orientierungslauf im Mikrokosmos

Physiker der Universität Würzburg können auf Knopfdruck einzelne Lichtteilchen erzeugen, die einander ähneln wie ein Ei dem anderen. Zwei neue Studien zeigen nun, welches Potenzial diese Methode hat.

Der Quantencomputer beflügelt seit Jahrzehnten die Phantasie der Wissenschaftler: Er beruht auf grundlegend anderen Phänomenen als ein herkömmlicher Rechner....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungen

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungen

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Lebensdauer alternder Brücken - prüfen und vorausschauen

29.05.2017 | Veranstaltungsnachrichten

49. eucen-Konferenz zum Thema Lebenslanges Lernen an Universitäten

29.05.2017 | Veranstaltungsnachrichten

Internationale Konferenz an der Schnittstelle von Literatur, Kultur und Wirtschaft

29.05.2017 | Veranstaltungsnachrichten