Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein tiefer Einblick in Grenzflächen

16.09.2016

Grenzflächen zwischen verschiedenen Materialien und deren physikalische Eigenschaften sind für moderne Technik von zentraler Bedeutung. Zusammen mit einem internationalen Team haben Physiker der Universität Würzburg jetzt ein Verfahren entwickelt, das einen extrem genauen Blick auf diese Grenzflächen und deren Modellierung ermöglicht.

Als der deutsche Physiker Herbert Kroemer im Jahr 2000 den Nobelpreis erhielt, prägte er in seiner Nobelvorlesung den Ausspruch „The Interface is the Device“ ("die Grenzfläche ist das Bauelement"). Kroemer bezog sich auf das Feld der Halbleiterfilme, auf welchen alle modernen elektronischen Geräte basieren.


Ausschnitt aus dem untersuchten Lanthan-Kobalt-Film mit positiv geladenen Lanthan-Oxid-Schichten (grüne und rote Atome) und negativ geladenen Kobalt-Oxid-Schichten (braune und rote Atome).

Abbildung: J.E. Hamann-Borrero und Vladimir Hinkov

Der Ausspruch ist heute aktueller denn je, am Beginn eines Zeitalters neuer, leistungsfähiger Bauelemente, die auf komplexeren und vielseitigeren topologischen und korrelierten Materialien basieren. Solche Materialien bilden den Forschungsschwerpunkt eines Großteils der Fakultät für Physik und Astronomie an der Universität Würzburg: Zur Zeit arbeiten 16 Gruppen auf dem Gebiet; die Entdeckung, Entwicklung und Erforschung dieser Materialien ist ebenfalls Hauptziel eines Sonderforschungsbereichs, der 2015 an den Start gegangen ist und von der Deutschen Forschungsgemeinschaft mit rund zehn Millionen Euro ausgestattet wurde.

Publikation in Nature Quantum Materials

Um wichtige Ladungseigenschaften von korrelierten Oxidgrenzflächen mit atomarer Auflösung zu bestimmen, haben Würzburger Physiker gemeinsam mit Kollegen aus Deutschland, Kanada, den USA und Korea in den vergangenen Jahren eine neue Methode entwickelt. In der aktuellen Ausgabe des Nature-Journals NPJ Quantum Materials beschreibt das Team um Physik-Professor Vladimir Hinkov diese experimentelle Methode.

„Herkömmliche elektronische Chips basieren auf Netzwerken aus sogenannten p-n-Übergängen - Grenzflächen zwischen Halbleitern, welche positive beziehungsweise negative Ladungen tragen“, beschreibt Vladimir Hinkov den Hintergrund dieser Forschung. Solche Netzwerke hätten jedoch mehrere Nachteile: Erstens seien die p-n-Übergänge dick, häufig von der Größenordnung von Hunderten von atomaren Lagen. Zweitens erfordere der Betrieb des Netzwerks die Bewegung von Elektronen, was wegen des elektrischen Widerstands viel Energie kostet. Drittens seien Halbleiter von Natur aus nicht magnetisch und ihre Elektronenkonfiguration sei sehr einfach: „Das limitiert dramatisch die Möglichkeiten, funktionelle Grenzflächen zu bilden und magnetische Anwendungen zu realisieren“, so der Physiker.

Vielfältige Eigenschaften erfordern anspruchsvolle Methoden

Übergangsmetalloxide hingegen weisen vielfältige Eigenschaften auf: Manche sind ferromagnetisch, andere antiferromagnetisch, und wiederum andere erweisen sich als Hochtemperatursupraleiter mit sehr ungewöhnlichen Eigenschaften. „An den Grenzflächen zwischen solchen Materialien beobachtet man eine Vielzahl von Phänomenen, welche für neuartige Anwendungen wie verschiedene Sensoren, verlustfreie Computerspeicher und extrem schnelle Prozessoren vielversprechende Möglichkeiten eröffnen“, sagt Hinkov. Im Gegenzug seien deutlich anspruchsvollere Methoden nötig, um diese Materialien zu untersuchen. Dies liege zum einen an der Vielzahl der physikalischen Phänomene und zum anderen an den viel kürzeren Längenskalen, oft nur wenige atomare Abstände, über die sich die Eigenschaften an den Grenzflächen ändern.

Verantwortlich für viele Eigenschaften dieser Materialien ist das Verhalten der Elektronen an der Grenzfläche: Neigen diese dazu, sich anzuhäufen? Welche Orbitale besetzen sie, das heißt: Wie ordnen sich die Elektronenwolken um die Atome an? Orientieren sich die winzigen magnetischen Momente der Elektronen, die so genannten Spins, in besonderer Weise relativ zueinander, so dass eine magnetische Ordnung entsteht? Auf diese und weitere Fragen suchen Physiker weltweit nach Antworten.

Messung in atomarer Größenordnung

Antworten liefern Methoden und eine Analyse-Software, die Hinkov und seine Mitarbeiter entwickelt haben. Sie basiert auf der so genannten „Resonanten Röntgenreflektometrie“, einer Messtechnik, die Röntgenlicht in einem Synchrotron nutzt, und das mit der nahezu atomaren Auflösung von unter einem Nanometer. Die Physiker haben ihre Methoden auf dünnen Filmen von Lanthan-Kobalt-Oxid angewendet, einem Material mit interessanten magnetischen Eigenschaften.

Dabei haben sie sich jedoch für die jetzt veröffentlichte Arbeit auf einen anderen Aspekt konzentriert: „Bevor wir uns auf die vielfältigen magnetischen Phänomene dieses Materials stürzen können, müssen wir ein fundamentales, sehr weit verbreitetes Programm lösen", sagt Professor Hinkov. So wie viele andere Materialien auch, wie z.B. gewöhnliches Kochsalz oder viele Halbleiter, besteht Lanthan-Kobalt-Oxid aus geladenen Teilchen. Diese sogenannten Ionen bilden eine Abfolge aus jeweils positiv und negativ geladenen Atomlagen, die zu einem 15 Nanometer dünnen Film gestapelt sind. „Man kann zeigen, dass enorme elektrostatische Felder zwischen den Lagen entstehen, was ein Problem darstellt, da die Felder Energie kosten“, erklärt Hinkov.

„Die Natur ist sparsam und vermeidet diese Energiekosten: Sie bringt jeweils positive und negative Ladungen zu den entgegengesetzten Filmgrenzflächen, ähnlich wie bei einem Plattenkondensator. Dadurch entsteht ein neues Feld, welches dem ursprünglichen entgegensetzt ist und dieses auslöscht“, erklärt der Physiker.

Wellige Grenzflächen bereiten Probleme

Die Anhäufung von reiner elektrischer Ladung an den Filmgrenzflächen nennt man „elektronische Rekonstruktion“. Aus Sicht der Physiker handelt es sich dabei um eine sehr elegante Lösung, da sie die Grenzflächen eben hält. Für Materialien, in welchen elektronische Rekonstruktion nicht möglich ist, wird die kompensierende Ladung durch recht große Ionen geliefert, was wellige Grenzflächen zur Folge hat. „Wellige Grenzflächen sind offensichtlich für die Funktion von elektronischen Bauteilen von Nachteil, insbesondere wenn sich die Materialeigenschaften, wie in den Übergangsmetalloxiden, an den Grenzflächen auf einer atomaren Skala ändern“, so Hinkov.

Dass eine elektronische Rekonstruktion an Oxidgrenzflächen realisiert werden kann, haben die Würzburger Physiker und ihre Kollegen mit der von ihnen entwickelten Methode jetzt gezeigt. Darüber hinaus beschreiben sie eine Methode, die zur Untersuchung der mikroskopischen Eigenschaften von Grenzflächen jenseits von elektronischer Rekonstruktion geeignet ist: Schließlich seien die Anordnung von Atomen, die elektronische Besetzung der Atomorbitale und die Spinorientierung von ebenso fundamentaler Bedeutung.

Ein Erfolg enger Zusammenarbeit

Das besondere „Würzburger Umfeld“ und die breit angelegte, internationale Zusammenarbeit, hat diesen Erfolg möglich gemacht. „Ein solches wissenschaftliches Unterfangen ist nur möglich, wenn Experten aus den verschiedensten Feldern eng zusammenarbeiten“, sagt Professor Hinkov. Nötig seien dafür exzellente Proben, hochpräzise Röntgenstreuinstrumente, die an modernen Synchrotron-Strahlungsquellen betrieben werden, eine spezielle Software und nicht zuletzt „Kollegen, die Tag und Nacht an den Instrumenten verbringen und ihre Messungen durchführen.“

Valence-state reflectometry of complex oxide heterointerfaces. Jorge E Hamann-Borrero, Sebastian Macke, Woo Seok Choi, Ronny Sutarto, Feizhou He, Abdullah Radi, Ilya Elfimov, Robert J Green, Maurits W Haverkort, Volodymyr B Zabolotnyy, Ho Nyung Lee, George A Sawatzky & Vladimir Hinkov. doi:10.1038/npjquantmats.2016.13

Kontakt

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV , T: (0931) 31-84481, hinkov@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten