Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein tiefer Einblick in Grenzflächen

16.09.2016

Grenzflächen zwischen verschiedenen Materialien und deren physikalische Eigenschaften sind für moderne Technik von zentraler Bedeutung. Zusammen mit einem internationalen Team haben Physiker der Universität Würzburg jetzt ein Verfahren entwickelt, das einen extrem genauen Blick auf diese Grenzflächen und deren Modellierung ermöglicht.

Als der deutsche Physiker Herbert Kroemer im Jahr 2000 den Nobelpreis erhielt, prägte er in seiner Nobelvorlesung den Ausspruch „The Interface is the Device“ ("die Grenzfläche ist das Bauelement"). Kroemer bezog sich auf das Feld der Halbleiterfilme, auf welchen alle modernen elektronischen Geräte basieren.


Ausschnitt aus dem untersuchten Lanthan-Kobalt-Film mit positiv geladenen Lanthan-Oxid-Schichten (grüne und rote Atome) und negativ geladenen Kobalt-Oxid-Schichten (braune und rote Atome).

Abbildung: J.E. Hamann-Borrero und Vladimir Hinkov

Der Ausspruch ist heute aktueller denn je, am Beginn eines Zeitalters neuer, leistungsfähiger Bauelemente, die auf komplexeren und vielseitigeren topologischen und korrelierten Materialien basieren. Solche Materialien bilden den Forschungsschwerpunkt eines Großteils der Fakultät für Physik und Astronomie an der Universität Würzburg: Zur Zeit arbeiten 16 Gruppen auf dem Gebiet; die Entdeckung, Entwicklung und Erforschung dieser Materialien ist ebenfalls Hauptziel eines Sonderforschungsbereichs, der 2015 an den Start gegangen ist und von der Deutschen Forschungsgemeinschaft mit rund zehn Millionen Euro ausgestattet wurde.

Publikation in Nature Quantum Materials

Um wichtige Ladungseigenschaften von korrelierten Oxidgrenzflächen mit atomarer Auflösung zu bestimmen, haben Würzburger Physiker gemeinsam mit Kollegen aus Deutschland, Kanada, den USA und Korea in den vergangenen Jahren eine neue Methode entwickelt. In der aktuellen Ausgabe des Nature-Journals NPJ Quantum Materials beschreibt das Team um Physik-Professor Vladimir Hinkov diese experimentelle Methode.

„Herkömmliche elektronische Chips basieren auf Netzwerken aus sogenannten p-n-Übergängen - Grenzflächen zwischen Halbleitern, welche positive beziehungsweise negative Ladungen tragen“, beschreibt Vladimir Hinkov den Hintergrund dieser Forschung. Solche Netzwerke hätten jedoch mehrere Nachteile: Erstens seien die p-n-Übergänge dick, häufig von der Größenordnung von Hunderten von atomaren Lagen. Zweitens erfordere der Betrieb des Netzwerks die Bewegung von Elektronen, was wegen des elektrischen Widerstands viel Energie kostet. Drittens seien Halbleiter von Natur aus nicht magnetisch und ihre Elektronenkonfiguration sei sehr einfach: „Das limitiert dramatisch die Möglichkeiten, funktionelle Grenzflächen zu bilden und magnetische Anwendungen zu realisieren“, so der Physiker.

Vielfältige Eigenschaften erfordern anspruchsvolle Methoden

Übergangsmetalloxide hingegen weisen vielfältige Eigenschaften auf: Manche sind ferromagnetisch, andere antiferromagnetisch, und wiederum andere erweisen sich als Hochtemperatursupraleiter mit sehr ungewöhnlichen Eigenschaften. „An den Grenzflächen zwischen solchen Materialien beobachtet man eine Vielzahl von Phänomenen, welche für neuartige Anwendungen wie verschiedene Sensoren, verlustfreie Computerspeicher und extrem schnelle Prozessoren vielversprechende Möglichkeiten eröffnen“, sagt Hinkov. Im Gegenzug seien deutlich anspruchsvollere Methoden nötig, um diese Materialien zu untersuchen. Dies liege zum einen an der Vielzahl der physikalischen Phänomene und zum anderen an den viel kürzeren Längenskalen, oft nur wenige atomare Abstände, über die sich die Eigenschaften an den Grenzflächen ändern.

Verantwortlich für viele Eigenschaften dieser Materialien ist das Verhalten der Elektronen an der Grenzfläche: Neigen diese dazu, sich anzuhäufen? Welche Orbitale besetzen sie, das heißt: Wie ordnen sich die Elektronenwolken um die Atome an? Orientieren sich die winzigen magnetischen Momente der Elektronen, die so genannten Spins, in besonderer Weise relativ zueinander, so dass eine magnetische Ordnung entsteht? Auf diese und weitere Fragen suchen Physiker weltweit nach Antworten.

Messung in atomarer Größenordnung

Antworten liefern Methoden und eine Analyse-Software, die Hinkov und seine Mitarbeiter entwickelt haben. Sie basiert auf der so genannten „Resonanten Röntgenreflektometrie“, einer Messtechnik, die Röntgenlicht in einem Synchrotron nutzt, und das mit der nahezu atomaren Auflösung von unter einem Nanometer. Die Physiker haben ihre Methoden auf dünnen Filmen von Lanthan-Kobalt-Oxid angewendet, einem Material mit interessanten magnetischen Eigenschaften.

Dabei haben sie sich jedoch für die jetzt veröffentlichte Arbeit auf einen anderen Aspekt konzentriert: „Bevor wir uns auf die vielfältigen magnetischen Phänomene dieses Materials stürzen können, müssen wir ein fundamentales, sehr weit verbreitetes Programm lösen", sagt Professor Hinkov. So wie viele andere Materialien auch, wie z.B. gewöhnliches Kochsalz oder viele Halbleiter, besteht Lanthan-Kobalt-Oxid aus geladenen Teilchen. Diese sogenannten Ionen bilden eine Abfolge aus jeweils positiv und negativ geladenen Atomlagen, die zu einem 15 Nanometer dünnen Film gestapelt sind. „Man kann zeigen, dass enorme elektrostatische Felder zwischen den Lagen entstehen, was ein Problem darstellt, da die Felder Energie kosten“, erklärt Hinkov.

„Die Natur ist sparsam und vermeidet diese Energiekosten: Sie bringt jeweils positive und negative Ladungen zu den entgegengesetzten Filmgrenzflächen, ähnlich wie bei einem Plattenkondensator. Dadurch entsteht ein neues Feld, welches dem ursprünglichen entgegensetzt ist und dieses auslöscht“, erklärt der Physiker.

Wellige Grenzflächen bereiten Probleme

Die Anhäufung von reiner elektrischer Ladung an den Filmgrenzflächen nennt man „elektronische Rekonstruktion“. Aus Sicht der Physiker handelt es sich dabei um eine sehr elegante Lösung, da sie die Grenzflächen eben hält. Für Materialien, in welchen elektronische Rekonstruktion nicht möglich ist, wird die kompensierende Ladung durch recht große Ionen geliefert, was wellige Grenzflächen zur Folge hat. „Wellige Grenzflächen sind offensichtlich für die Funktion von elektronischen Bauteilen von Nachteil, insbesondere wenn sich die Materialeigenschaften, wie in den Übergangsmetalloxiden, an den Grenzflächen auf einer atomaren Skala ändern“, so Hinkov.

Dass eine elektronische Rekonstruktion an Oxidgrenzflächen realisiert werden kann, haben die Würzburger Physiker und ihre Kollegen mit der von ihnen entwickelten Methode jetzt gezeigt. Darüber hinaus beschreiben sie eine Methode, die zur Untersuchung der mikroskopischen Eigenschaften von Grenzflächen jenseits von elektronischer Rekonstruktion geeignet ist: Schließlich seien die Anordnung von Atomen, die elektronische Besetzung der Atomorbitale und die Spinorientierung von ebenso fundamentaler Bedeutung.

Ein Erfolg enger Zusammenarbeit

Das besondere „Würzburger Umfeld“ und die breit angelegte, internationale Zusammenarbeit, hat diesen Erfolg möglich gemacht. „Ein solches wissenschaftliches Unterfangen ist nur möglich, wenn Experten aus den verschiedensten Feldern eng zusammenarbeiten“, sagt Professor Hinkov. Nötig seien dafür exzellente Proben, hochpräzise Röntgenstreuinstrumente, die an modernen Synchrotron-Strahlungsquellen betrieben werden, eine spezielle Software und nicht zuletzt „Kollegen, die Tag und Nacht an den Instrumenten verbringen und ihre Messungen durchführen.“

Valence-state reflectometry of complex oxide heterointerfaces. Jorge E Hamann-Borrero, Sebastian Macke, Woo Seok Choi, Ronny Sutarto, Feizhou He, Abdullah Radi, Ilya Elfimov, Robert J Green, Maurits W Haverkort, Volodymyr B Zabolotnyy, Ho Nyung Lee, George A Sawatzky & Vladimir Hinkov. doi:10.1038/npjquantmats.2016.13

Kontakt

Prof. Dr. Vladimir Hinkov, Lehrstuhl für Experimentelle Physik IV , T: (0931) 31-84481, hinkov@physik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Weitere Informationen:
http://www.uni-wuerzburg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Weniger (Flug-)Lärm dank Mathematik
21.09.2017 | Forschungszentrum MATHEON ECMath

nachricht Der stotternde Motor im Weltall
21.09.2017 | Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften