Ein „Schweizer Taschenmesser“ für Elektronenstrahlen – vier Geräte in einem

STEAM im Vergleich zu einem Spielzeugauto: Das Multifunktionsgerät ist nur rund zwei Zentimeter groß. Der eintreffende und ausgehende Elektronenstrahl ist symbolisiert dargestellt. Bild: DESY, Gesine Born

Eine der zentralen Eigenschaften des neuartigen Geräts ist die perfekte zeitliche Abstimmung mit dem Elektronenstrahl. Diese beruht darauf, das mit jeweils demselben Laser-Puls sowohl ein Elektronenpaket erzeugt als auch das Gerät betrieben wird.

„Wir starten mit einem infraroten Laser-Puls und teilen ihn auf“, erläutert der Hauptautor der Veröffentlichung, Dongfang Zhang aus der CFEL-Gruppe von Franz Kärtner. „Beide Teile werden durch nichtlineare Kristalle geleitet, die die Laser-Wellenlänge verschieben: Für die Erzeugung des Elektronenpakets wird die Wellenlänge des Lasers ins Ultraviolette verkürzt und der Laser auf eine Photokathode geleitet, aus der er die Elektronenpakete herauslöst. Für STEAM wird die Wellenlänge in den Terahertz-Bereich verlängert. Das Timing zwischen beiden Teilen des ursprünglichen Laser-Pulses hängt dabei nur von der Länge des Wegs ab, den sie nehmen, und lässt sich sehr genau einstellen.“

Auf diese Weise können die Wissenschaftler sehr genau kontrollieren, bei welchem Zustand des wechselnden Terahertz-Feldes ein Elektronenpaket im Gerät eintrifft. Je nach der genauen Ankunftszeit führt STEAM dann seine unterschiedlichen Funktionen aus. „Ein Elektronenpaket, das den negativen Teil des elektrischen Terahertz-Feldes triftt, wird beispielsweise beschleunigt“, erläutert Zhang.

„Andere Teile des Feldes führen zum Fokussieren oder gezielten Defokussieren des Pakets oder zu einer Komprimierung um ungefähr den Faktor Zehn.“ Komprimierung bedeutet dabei ein Zusammenstauchen des Elektronenpakets in Flugrichtung, während bei der Fokussierung der Durchmesser des Pakets senkrecht zur Flugrichtung schrumpft.

Darüber hinaus ermöglicht STEAM eine Untersuchung der Struktur des Elektronenpakets entlang der Flugrichtung. Dafür wird das Paket seitlich aufgefächert. Wenn das aufegfächerte Paket einen Detektor trifft, entsteht ein Profil entlang der Längsachse des Pakets. Diese Methode heißt Streaking und wird regelmäßig für die Analyse von Elektronenpaketen in Teilchenbeschleunigern eingesetzt.

STEAM kann zusätzlich zu seinen drei anderen Funktionen auch Elektronenpakete für das Streaking passend auffächern. „STEAM ist eine Art Schweizer Taschenmesser für Elektronenstrahlen“, sagt Zhang. Um verschiedene Funktionen an demselben Elektronenpaket auszuführen, lassen sich mehrere der Geräte kombinieren.

Der Einsatz von Terahertz-Strahlung ist dabei auch verantwortlich für die kompakte Bauweise des experimentellen Manipulators. „Terahertz-Strahlung hat typischerweise eine hundertmal kleinere Wellenlänge als die Radiofrequenz-Strahlung, die in den großen Teilchenbeschleunigern heute eingesetzt wird. Daher lassen sich alle Strukturen in dem Gerät entsprechend schrumpfen“, erläutert Kärtner, der Leitender Wissenschaftler bei DESY und Professor an der Universität Hamburg ist. Mit nur etwas mehr als zwei Zentimetern Breite passt STEAM leicht in eine Streichholzschachtel. „Und das ist nur das Gehäuse. Die aktiven Strukturen liegen auf der Millimeterskala“, ergänzt Zhang.

Die STEAM-Technologie befindet sich noch in einem experimentellen Stadium. Die Entwickler sehen STEAM als einen ersten wichtigen Schritt auf dem Weg zu einer künftigen Generation kompakter Terahertz-Elektronenbeschleuniger, die heutige Anlagen ergänzen und ganz neue Anwendungen ermöglichen kann. Der Mini-Manipulator kann aber bereits heute Anwendung finden, Beschleuniger-Forscher rund um den Globus haben bereits Interesse für einen Einsatz zur Untersuchung ihrer Elektronenpakete signalisiert, wie Kärtner betont. „STEAM kann für zukünftige Tisch-Beschleuniger benutzt werden, aber seine verschiedenen Funktionen sind auch für existierende Anlagen interessant.“

DESY zählt zu den weltweit führenden Beschleunigerzentren und erforscht die Struktur und Funktion von Materie – vom Wechselspiel kleinster Elementarteilchen, dem Verhalten neuartiger Nanowerkstoffe und lebenswichtiger Biomoleküle bis hin zu den großen Rätseln des Universums. Die Teilchenbeschleuniger und die Nachweisinstrumente, die DESY an seinen Standorten in Hamburg und Zeuthen entwickelt und baut, sind einzigartige Werkzeuge für die Forschung. DESY ist Mitglied der Helmholtz-Gemeinschaft und wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent von den Ländern Hamburg und Brandenburg finanziert.

Originalveröffentlichung
Segmented Terahertz Electron Accelerator and Manipulator (STEAM); Dongfang Zhang, Arya Fallahi, Michael Hemmer, Xiaojun Wu, Moein Fakhari, Yi Hua, Huseyin Cankaya, Anne-Laure Calendron, Luis E. Zapata, Nicholas H. Matlis and Franz X. Kärtner; „Nature Photonics”, 2018; DOI: 10.1038/s41566-018-0138-z

https://www.desy.de/aktuelles/news_suche/index_ger.html?openDirectAnchor=1371&am… – Pressemitteilung mit Bildmaterial
https://www.nature.com/articles/s41566-018-0138-z – wissenschaftliche Originalveröffentlichung

Media Contact

Dr. Thomas Zoufal idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer