Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Resonator für Elektronen

13.10.2015

Resonatoren sind ein wichtiges Werkzeug in der Physik. Mit Hilfe von Hohlspiegeln bündeln sie normalerweise Lichtwellen, die dann beispielsweise auf Atome einwirken. Physikern an der ETH Zürich ist es nun gelungen, einen Resonator für Elektronen zu bauen und die damit erzeugten Stehwellen auf ein künstliches Atom zu richten.

Die Idee, mit einem gekrümmten Spiegel Licht so zu reflektieren, dass es in einem Punkt gebündelt wird, hatte der griechische Naturforscher Archimedes schon vor mehr als zweitausend Jahren – der Legende nach steckte er auf diese Weise feindliche römische Schiffe in Brand.


Elektronenmikroskopische Aufnahme des ETH-Experiments. Zwischen dem Quantenpunkt (links) und der gekrümmten Elektrode (rechts) bilden sich elektronische Stehwellen, die mit den Elektronen des Quantenpunktes wechselwirken. (Bild: Rössler C et al. Physical Review Letters 2015)

Heutzutage spielen solche Hohl- oder Parabolspiegel in vielen technischen Anwendungen eine Rolle, von der Satellitenschüssel bis hin zu Laser-Resonatoren, in denen Lichtwellen zwischen zwei Spiegeln verstärkt werden. Auch in der modernen Quantenphysik kommen Hohlspiegel-Resonatoren zum Einsatz. Um zum Beispiel einzelne Atome zu studieren, nutzen Forscher die Bündelung des Lichts durch die Spiegel aus, um die Wechselwirkung zwischen den Lichtwellen und den Atomen zu verstärken.

Einem Team von Physikern der ETH Zürich innerhalb des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NFS QSIT [http://www.nccr-qsit.ethz.ch/index_DE]) ist es nun gelungen, einen Resonator zu konstruieren, in dem nicht Lichtwellen, sondern Elektronen gebündelt werden. In Zukunft könnten solche Resonatoren beim Bau von Quantencomputern und in der Erforschung von Vielteilcheneffekten in Festkörpern zum Einsatz kommen.

Für ihre Experimente nutzten die Postdoktoranden Clemens Rössler und Oded Zilberberg Halbleiterstrukturen, in denen Elektronen sich nur in einer Ebene bewegen können. An einem Ende der Ebene befindet sich ein so genannter Quantenpunkt – eine nur hundert Nanometer grosse Falle für Elektronen, die aufgrund der Quantenmechanik genau festgelegte Energiezustände ähnlich denen eines Atoms aufweisen. Man nennt solche Quantenpunkte daher auch «künstliche Atome». Auf der anderen Seite, wenige Mikrometer entfernt, bildet eine gekrümmte Elektrode einen Hohlspiegel, von dem Elektronen reflektiert werden, wenn dieser unter Spannung gesetzt wird.

Bessere Materialien

Die Möglichkeit, Elektronen auf diese Weise zu bündeln, wurde bereits 1997 an der Harvard-Universität untersucht. Allerdings konnten die ETH-Forscher nun mit wesentlich besseren Materialien arbeiten, die direkt im Labor von Werner Wegscheider, Professor für Festkörperphysik, hergestellt wurden. «Diese sind hundertmal reiner als die damals verwendeten», erklärt Rössler, «und damit können sich die Elektronen auch hundertmal so lange ungestört bewegen». Dies wiederum führt dazu, dass sich im Gegensatz zu den früheren Arbeiten die quantenmechanische Wellennatur der Elektronen nun sehr deutlich bemerkbar macht.

In ihrem Experiment sehen das die Physiker daran, dass sich der Strom, der vom Quantenpunkt zum Hohlspiegel fliesst, auf charakteristische Weise mit der angelegten Spannung ändert. «Unsere Resultate zeigen, dass die Elektronen im Resonator nicht einfach hin und her fliegen, sondern eine Stehwelle bilden und so kohärent an den Quantenpunkt koppeln», betont Rössler, der das Experiment in der Arbeitsgruppe von ETH-Professor Klaus Ensslin entwickelt hat.

Anders als bei Lichtwellen sorgt der Spin der Elektronen zudem dafür, dass diese sich wie winzige Magnete verhalten. Tatsächlich konnten die Forscher nachweisen, dass die Wechselwirkung zwischen den Quantenpunkt-Elektronen und der Elektronen-Welle über den Spin stattfindet. «Diese Spin-kohärente Kopplung könnte es in Zukunft möglich machen, Quantenpunkte über grosse Distanzen zu verbinden», sagt Zilberberg, der in der Gruppe von ETH-Professor Gianni Blatter ein theoretisches Modell zu Rösslers Experiment entwickelt hat.

Geeignet für Quantencomputer

Schon länger werden Quantenpunkte als mögliche Kandidaten für so genannte Quanten-Bits oder «Qubits» gehandelt, mit denen Quantencomputer rechnen. Bisher mussten die Quantenpunkte in einem solchen Rechner sehr nah beieinander stehen, um die nötige Kopplung für die Rechenvorgänge zu erreichen. Das wiederum machte es schwierig, einzelne Qubits zu kontrollieren und auszulesen. Eine weitreichende Kopplung über einen entsprechend gestalteten Resonator könnte dieses Problem elegant lösen.

Auch in der Grundlagenforschung könnten die Elektronen-Resonatoren der ETH-Forscher nützlich werden, etwa bei der Untersuchung des Kondo-Effekts. Dieser tritt auf, wenn viele Elektronen zusammen mit dem magnetischen Moment einer Verunreinigung im Material wechselwirken. Mit Hilfe eines Quantenpunktes, der eine solche Verunreinigung simuliert, und eines Resonators erhoffen sich die Physiker, den Kondo-Effekt sehr präzise studieren zu können.

Von der Idee für ihre Forschung – die aus Diskussionen während eines früheren Experiments entstand – und der jetzt erscheinenden Publikation brauchten die jungen Forscher nur etwas mehr als ein Jahr. Dafür, dass es so schnell ging, hat Zilberberg eine einfache Erklärung: «Innerhalb des QSIT-Netzwerks ist es leicht, spontan über Gruppen hinweg zusammenzuarbeiten, da man sich räumlich und thematisch sehr nah und sowieso in gemeinsamen Projekten involviert ist. Und wenn man zu irgendetwas die Meinung eines Experten braucht, so sitzt dieser meist nur ein paar Büros entfernt.»

Literaturhinweis

Rössler C, Oehri D, Zilberberg O, Blatter G, Karalic M, Pijnenburg J, Hofmann A, Ihn T, Ensslin K, Reichl C, Wegscheider W: Transport Spectroscopy of a Spin-Coherent Dot-Cavity System. Physical Review Letters, 12. Oktober 2015, doi: 10.1103/PhysRevLett.115.166603 [http://dx.doi.org/10.1103/PhysRevLett.115.166603]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/10/ein-resona...

News und Medienstelle | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie