Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Resonator für Elektronen

13.10.2015

Resonatoren sind ein wichtiges Werkzeug in der Physik. Mit Hilfe von Hohlspiegeln bündeln sie normalerweise Lichtwellen, die dann beispielsweise auf Atome einwirken. Physikern an der ETH Zürich ist es nun gelungen, einen Resonator für Elektronen zu bauen und die damit erzeugten Stehwellen auf ein künstliches Atom zu richten.

Die Idee, mit einem gekrümmten Spiegel Licht so zu reflektieren, dass es in einem Punkt gebündelt wird, hatte der griechische Naturforscher Archimedes schon vor mehr als zweitausend Jahren – der Legende nach steckte er auf diese Weise feindliche römische Schiffe in Brand.


Elektronenmikroskopische Aufnahme des ETH-Experiments. Zwischen dem Quantenpunkt (links) und der gekrümmten Elektrode (rechts) bilden sich elektronische Stehwellen, die mit den Elektronen des Quantenpunktes wechselwirken. (Bild: Rössler C et al. Physical Review Letters 2015)

Heutzutage spielen solche Hohl- oder Parabolspiegel in vielen technischen Anwendungen eine Rolle, von der Satellitenschüssel bis hin zu Laser-Resonatoren, in denen Lichtwellen zwischen zwei Spiegeln verstärkt werden. Auch in der modernen Quantenphysik kommen Hohlspiegel-Resonatoren zum Einsatz. Um zum Beispiel einzelne Atome zu studieren, nutzen Forscher die Bündelung des Lichts durch die Spiegel aus, um die Wechselwirkung zwischen den Lichtwellen und den Atomen zu verstärken.

Einem Team von Physikern der ETH Zürich innerhalb des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (NFS QSIT [http://www.nccr-qsit.ethz.ch/index_DE]) ist es nun gelungen, einen Resonator zu konstruieren, in dem nicht Lichtwellen, sondern Elektronen gebündelt werden. In Zukunft könnten solche Resonatoren beim Bau von Quantencomputern und in der Erforschung von Vielteilcheneffekten in Festkörpern zum Einsatz kommen.

Für ihre Experimente nutzten die Postdoktoranden Clemens Rössler und Oded Zilberberg Halbleiterstrukturen, in denen Elektronen sich nur in einer Ebene bewegen können. An einem Ende der Ebene befindet sich ein so genannter Quantenpunkt – eine nur hundert Nanometer grosse Falle für Elektronen, die aufgrund der Quantenmechanik genau festgelegte Energiezustände ähnlich denen eines Atoms aufweisen. Man nennt solche Quantenpunkte daher auch «künstliche Atome». Auf der anderen Seite, wenige Mikrometer entfernt, bildet eine gekrümmte Elektrode einen Hohlspiegel, von dem Elektronen reflektiert werden, wenn dieser unter Spannung gesetzt wird.

Bessere Materialien

Die Möglichkeit, Elektronen auf diese Weise zu bündeln, wurde bereits 1997 an der Harvard-Universität untersucht. Allerdings konnten die ETH-Forscher nun mit wesentlich besseren Materialien arbeiten, die direkt im Labor von Werner Wegscheider, Professor für Festkörperphysik, hergestellt wurden. «Diese sind hundertmal reiner als die damals verwendeten», erklärt Rössler, «und damit können sich die Elektronen auch hundertmal so lange ungestört bewegen». Dies wiederum führt dazu, dass sich im Gegensatz zu den früheren Arbeiten die quantenmechanische Wellennatur der Elektronen nun sehr deutlich bemerkbar macht.

In ihrem Experiment sehen das die Physiker daran, dass sich der Strom, der vom Quantenpunkt zum Hohlspiegel fliesst, auf charakteristische Weise mit der angelegten Spannung ändert. «Unsere Resultate zeigen, dass die Elektronen im Resonator nicht einfach hin und her fliegen, sondern eine Stehwelle bilden und so kohärent an den Quantenpunkt koppeln», betont Rössler, der das Experiment in der Arbeitsgruppe von ETH-Professor Klaus Ensslin entwickelt hat.

Anders als bei Lichtwellen sorgt der Spin der Elektronen zudem dafür, dass diese sich wie winzige Magnete verhalten. Tatsächlich konnten die Forscher nachweisen, dass die Wechselwirkung zwischen den Quantenpunkt-Elektronen und der Elektronen-Welle über den Spin stattfindet. «Diese Spin-kohärente Kopplung könnte es in Zukunft möglich machen, Quantenpunkte über grosse Distanzen zu verbinden», sagt Zilberberg, der in der Gruppe von ETH-Professor Gianni Blatter ein theoretisches Modell zu Rösslers Experiment entwickelt hat.

Geeignet für Quantencomputer

Schon länger werden Quantenpunkte als mögliche Kandidaten für so genannte Quanten-Bits oder «Qubits» gehandelt, mit denen Quantencomputer rechnen. Bisher mussten die Quantenpunkte in einem solchen Rechner sehr nah beieinander stehen, um die nötige Kopplung für die Rechenvorgänge zu erreichen. Das wiederum machte es schwierig, einzelne Qubits zu kontrollieren und auszulesen. Eine weitreichende Kopplung über einen entsprechend gestalteten Resonator könnte dieses Problem elegant lösen.

Auch in der Grundlagenforschung könnten die Elektronen-Resonatoren der ETH-Forscher nützlich werden, etwa bei der Untersuchung des Kondo-Effekts. Dieser tritt auf, wenn viele Elektronen zusammen mit dem magnetischen Moment einer Verunreinigung im Material wechselwirken. Mit Hilfe eines Quantenpunktes, der eine solche Verunreinigung simuliert, und eines Resonators erhoffen sich die Physiker, den Kondo-Effekt sehr präzise studieren zu können.

Von der Idee für ihre Forschung – die aus Diskussionen während eines früheren Experiments entstand – und der jetzt erscheinenden Publikation brauchten die jungen Forscher nur etwas mehr als ein Jahr. Dafür, dass es so schnell ging, hat Zilberberg eine einfache Erklärung: «Innerhalb des QSIT-Netzwerks ist es leicht, spontan über Gruppen hinweg zusammenzuarbeiten, da man sich räumlich und thematisch sehr nah und sowieso in gemeinsamen Projekten involviert ist. Und wenn man zu irgendetwas die Meinung eines Experten braucht, so sitzt dieser meist nur ein paar Büros entfernt.»

Literaturhinweis

Rössler C, Oehri D, Zilberberg O, Blatter G, Karalic M, Pijnenburg J, Hofmann A, Ihn T, Ensslin K, Reichl C, Wegscheider W: Transport Spectroscopy of a Spin-Coherent Dot-Cavity System. Physical Review Letters, 12. Oktober 2015, doi: 10.1103/PhysRevLett.115.166603 [http://dx.doi.org/10.1103/PhysRevLett.115.166603]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/10/ein-resona...

News und Medienstelle | ETH Zürich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen
19.06.2018 | Johannes Gutenberg-Universität Mainz

nachricht Ein neues Experiment zum Verständnis der Dunklen Materie
14.06.2018 | Max-Planck-Institut für Radioastronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Überdosis Calcium

Nanokristalle beeinflussen die Differenzierung von Stammzellen während der Knochenbildung

Wissenschaftlerinnen und Wissenschaftler der Universitäten Freiburg und Basel haben einen Hauptschalter für die Regeneration von Knochengewebe identifiziert....

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 in Shanghai

Die AchemAsia geht in ihr viertes Jahrzehnt und bricht auf zu neuen Ufern: Das International Expo and Innovation Forum for Sustainable Chemical Production findet vom 21. bis 23. Mai 2019 in Shanghai, China statt. Gleichzeitig erhält die Veranstaltung ein aktuelles Profil: Die elfte Ausgabe fokussiert auf Themen, die für Chinas Prozessindustrie besonders relevant sind, und legt den Schwerpunkt auf Nachhaltigkeit und Innovation.

1989 wurde die AchemAsia als Spin-Off der ACHEMA ins Leben gerufen, um die Bedürfnisse der sich damals noch entwickelnden Iindustrie in China zu erfüllen. Seit...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: Li-Fi erstmals für das industrielle Internet der Dinge getestet

Mit einer Abschlusspräsentation im BMW Werk München wurde das BMBF-geförderte Projekt OWICELLS erfolgreich abgeschlossen. Dabei wurde eine Li-Fi Kommunikation zu einem mobilen Roboter in einer 5x5m² Fertigungszelle demonstriert, der produktionsübliche Vorgänge durchführt (Teile schweißen, umlegen und prüfen). Die robuste, optische Drahtlosübertragung beruht auf räumlicher Diversität, d.h. Daten werden von mehreren LEDs und mehreren Photodioden gleichzeitig gesendet und empfangen. Das System kann Daten mit mehr als 100 Mbit/s und fünf Millisekunden Latenz übertragen.

Moderne Produktionstechniken in der Automobilindustrie müssen flexibler werden, um sich an individuelle Kundenwünsche anpassen zu können. Forscher untersuchen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hengstberger-Symposium zur Sternentstehung

19.06.2018 | Veranstaltungen

LymphomKompetenz KOMPAKT: Neues vom EHA2018

19.06.2018 | Veranstaltungen

Simulierter Eingriff am virtuellen Herzen

18.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätselhaftes IceCube-Ereignis könnte von Tau-Neutrino stammen

19.06.2018 | Physik Astronomie

Automatisierung und Produktionstechnik – Wandlungsfähig – Präzise – Digital

19.06.2018 | Messenachrichten

Überdosis Calcium

19.06.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics