Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Phasenschieber für Atome - Quantenohren belauschen atomare Zustände in Helium

14.03.2014

Zwei Elektronen im Heliumatom offenbaren eine allgemeine Methode zur Vermessung zeitabhängiger Amplituden und Phaseninformation in angeregten Zuständen

Schwingungen und Wellen sind neben ihrer Frequenz und Amplitude durch ihren zeitlichen Verlauf bezüglich eines vorgegebenen Zeitpunkts bestimmt – die sogenannte Phase. Die Phase wird in der Regel nicht beobachtet, aber bei der Überlagerung mehrerer Schwingungen (Interferenz) z.B. im unterschiedlichen Obertonspektrum verschiedener Musikinstrumente sind Phasendifferenzen von entscheidender Bedeutung.


Die Linienform wurde als Funktion der Verzögerungszeit (Abb. 1a) und der Intensität des koppelnden Lasers analysiert und erlaubte die Bestimmung einer komplexen Zahl, deren Amplitude und Phase den quantenmechanischen Zustand nach seiner Kopplung durch den Laser vollständig beschreibt. Als Funktion der Zeit sollte die komplexe Zahl laut Theorie einen Kreis in der komplexen Zahlenebene beschreiben (Abb. 1b), wobei sich die Phase (Winkel) periodisch hin- und her bewegt.

Grafik: MPIK

Im Falle von Schallwellen nimmt unser Gehör nur Frequenzen und Intensitäten (Quadrat der Amplitude) bewusst wahr. Wir können aber eine Schallquelle niederer Frequenz (unbewusst) anhand der Phasendifferenz des Signals orten, das unsere beiden Ohren mit leicht unterschiedlicher Laufzeit erreicht. Entsprechend spielen Phasen in der Stereo-Tontechnik eine wichtige Rolle und mit elektronischen Phasenschiebern lässt sich die räumliche Qualität von Schallsignalen beeinflussen und optimieren.

Die gleichen Prinzipien gelten in der Quantenmechanik, wo die Bewegung von Teilchen — beschrieben durch Wellenfunktionen – durch die Überlagerung mehrerer angeregter Zustände mit definierter Phasenbeziehung (Kohärenz) entsteht. Befinden sich diese Bewegungen zusätzlich unter dem Einfluss äußerer Felder, kommt es durch Licht-Materie Wechselwirkung (Kopplung) zu weiteren Beiträgen zur Phasenentwicklung sowie auch Veränderungen der Besetzungswahrscheinlichkeit der Zustände, z. B. durch Quantenübergänge.

Während die Besetzungswahrscheinlichkeit — das Quadrat der quantenmechanischen Zustandsamplitude — direkt experimentell zugänglich ist, so ist die Phasenänderung einzelner gebundener Zustände, insbesondere in starken Laserfeldern, keine direkt messbare Größe.

Eine zustandsselektive Methode zur Messung der vollständigen quantenmechanischen Information, Amplitude und Phasenänderung wurde nun am Max-Planck Institut für Kernphysik gefunden und dabei auch ein kontrollierter Phasenschieber für atomare Zustände realisiert. Sie basiert auf der Analyse von Linienformen im Spektrum von Licht unter dem Einfluss äußerer Laserfelder.

Die Linienform wurde als Funktion der Verzögerungszeit (Abb. 1a) und der Intensität des koppelnden Lasers analysiert und erlaubte die Bestimmung einer komplexen Zahl, deren Amplitude und Phase den quantenmechanischen Zustand nach seiner Kopplung durch den Laser vollständig beschreibt. Als Funktion der Zeit sollte die komplexe Zahl laut Theorie einen Kreis in der komplexen Zahlenebene beschreiben (Abb. 1b), wobei sich die Phase (Winkel) periodisch hin- und her bewegt.

Interessanterweise wurden von den Forschern mit zunehmender Intensität der Laserkopplung Ellipsen beobachtet, die auf die Kopplung mit weiteren zunächst unerwarteten (Kontinuums-) Zuständen im Heliumatom hindeuten. Auf diese Weise lieferte diese neue quantitative ‚Phasenschieber‘-Methode auch ein qualitativ erweitertes Verständnis der fundamentalen Licht-Materie Wechselwirkung in Atomen.

Die Methode ist weder auf Helium noch auf die hier untersuchten doppelt-angeregten Zustände beschränkt, sondern erlaubt in jeder Form der Spektroskopie die Untersuchung zeitabhängiger Zustandsveränderungen. Diese Universalität wird in der Zukunft Einblicke in die nichtlineare Feld-Materie Kopplung in Atomen, Molekülen, Kernen oder auch der kondensierten Materie erlauben. Hochauflösende Spektroskopie ermöglicht schon jetzt genaueste Tests von Theorien der Atomstruktur und ihrer fundamentalen Wechselwirkungen. Die neu gefundene Methode könnte in der Zukunft präzise Tests fundamentaler Dynamik und zeitabhängiger Wechselwirkung in kleinen Quantensystemen erschließen: Ein Phasensprung in der Entwicklung der Quantendynamik.

Originalpublikation:

Extracting Phase and Amplitude Modifications of Laser-Coupled Fano Resonances
Andreas Kaldun, Christian Ott, Alexander Blättermann, Martin Laux, Kristina Meyer, Thomas Ding, Andreas Fischer, and Thomas Pfeifer
Phys. Rev. Lett. 112, 103001

Kontakt:

Dipl. Phys. Andreas Kaldun
MPI für Kernphysik
E-Mail: andreas.kaldun@mpi-hd.mpg.de
Tel.: +49 6221 526-380

Dr. Thomas Pfeifer
MPI für Kernphysik
E-Mail: thomas.pfeifer@mpi-hd.mpg.de
Tel.: +49 6221 526-380

Weitere Informationen:

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.112.103001 Originalpublikation
http://www.mpi-hd.mpg.de/mpi/de/pfeifer/interatto-home/ INTERATTO-Gruppe von Thomas Pfeifer am MPIK
http://www.mpi-hd.mpg.de/mpi/aktuelles/meldung/detail/die-spur-der-zeit-im-optis... Die Spur der Zeit im optischen Spektrum

Dr. Bernold Feuerstein | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie