Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Verfahren fördert Quantenkryptographie und Quanten-Computing

04.03.2014

Daten sicher zu verschlüsseln, ist eine Herausforderung nicht nur für die Informatik, sondern auch für die physikalische Grundlagenforschung.

Am Physikalischen Institut der Universität Bayreuth hat Dr. Martin Gläßl jetzt durch theoretische Berechnungen gezeigt, wie leistungsstark ein neues Verfahren arbeitet, das von zentraler Bedeutung für die Quantenkryptographie – eine neuartige Verschlüsselungstechnologie – ist.


Dr. Martin Gläßl ist Postdoktorand am Lehrstuhl Theoretische Physik III der Universität Bayreuth.

Foto: Dr. Martin Gläßl; zur Veröffentlichung frei.

Das Verfahren wurde erst kürzlich an der Universität Stuttgart entwickelt. Im Forschungsmagazin „Nature Photonics“ berichten die Wissenschaftler gemeinsam über ihre wegweisenden Ergebnisse.

Voraussetzungen der Quantenkryptographie

Licht kann in der Physik alternativ als Teilchen oder als Welle beschrieben werden. Im Teilchenmodell des Lichts werden die Lichtquanten, also die kleinsten „Einheiten“ des Lichts, als Photonen bezeichnet. Die Quantenkryptographie ist eine Technologie, die vorwiegend mit Photonen arbeitet und eine abhörsichere Kommunikation ermöglicht.

Damit diese Technologie mit der angestrebten Zuverlässigkeit zum Einsatz kommen kann, müssen wiederholt – und zwar auf Knopfdruck und in genau definierten zeitlichen Abständen – einzelne Paare von Photonen erzeugt werden, die spezielle Eigenschaften besitzen.

Zunächst einmal müssen die Lichtquanten, die jeweils paarweise entstehen sollen, ununterscheidbar sein; sie müssen also beispielsweise die gleiche Wellenlänge aufweisen. Darüber hinaus ist es erforderlich, dass sie polarisationsverschränkt sind.

Dies bedeutet: Wird die Polarisation – also die Schwingungsrichtung – eines der beiden Photonen gemessen, kann dadurch zugleich die Polarisation des zweiten Photons ermittelt werden; und zwar unabhängig davon, wie weit die beiden Partnerphotonen räumlich voneinander entfernt sind, und obwohl die Polarisation jedes einzelnen der beiden Photonen vor der Messung komplett unbestimmt war.

Mit hoher Zuverlässigkeit realisiert: Photonenpaare „on demand“

Es war schon länger bekannt, dass nanostrukturierte Halbleiter, die in der Forschung als Quantenpunkte bezeichnet werden, für die Erzeugung solcher Photonenpaare besonders gut geeignet sind. Durch einen kurzen elektrischen oder optischen Puls können diese Punkte gezielt anregt werden, damit anschließend Photonen ausgesendet werden. Allerdings entstehen die Photonenpaare mit den gewünschten Eigenschaften und in vorhersagbarer Weise nur dann, wenn spezielle Voraussetzungen erfüllt sind: Der optische Puls – beispielsweise erzeugt von einem Laser – muss im Quantenpunkt zwei Elektronen simultan auf das gleiche höhere, exakt definierte Energieniveau heben; in diesem Fall entstehen parallel dazu zwei gleiche Elektronenfehlstellen, sogenannte Löcher. Fallen die Elektronen kurze Zeit später auf das niedrigere Niveau zurück, verschwinden die Löcher, und es werden zwei Photonen erzeugt: im Idealfall ununterscheidbar und polarisationsverschränkt.

Diesen Vorgang gleichsam auf Bestellung zu realisieren und in definierten Abständen zu wiederholen, gestaltet sich in der Praxis äußerst schwierig. Denn die verwendeten Objekte sind sehr klein: Ein Quantenpunkt hat eine Ausdehnung von nur wenigen Nanometern. Zudem ist die Dauer des verwendeten Laserpulses extrem kurz; sie liegt typischerweise im Bereich des billiardsten Teils einer Sekunde. Und nicht zuletzt kann die unmittelbare Umgebung der Quantenpunkte eine gezielte energetische Anregung störend beeinflussen.

Am Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart ist es nun jedoch einer experimentellen Arbeitsgruppe unter der Leitung von Prof. Dr. Peter Michler gelungen, diese Schwierigkeiten zu überwinden. Es wurde ein Versuchsaufbau entwickelt, der es über einen „resonanten Zweiphotonen-Anregungsprozess“ ermöglicht, mit hoher Zuverlässigkeit und auf Knopfdruck wiederholt einzelne Paare von Photonen zu erzeugen, die sowohl ununterscheidbar als auch polarisationsverschränkt sind. Damit sind die Grundlagen für ein Verfahren gelegt, das beispielsweise die Verschlüsselung von Daten mithilfe von Lichtquanten – aber auch weitere Technologien – erheblich voranbringen kann.

Theoretische Berechnungen verifizieren die experimentellen Erfolge

Wie konnte festgestellt werden, dass der neue Versuchsaufbau sich durch eine derart hohe Zuverlässigkeit auszeichnet? An dieser Stelle waren die Forschungsarbeiten von Dr. Martin Gläßl am Physikalischen Institut der Universität Bayreuth von zentraler Bedeutung. Mit theoretischen Berechnungen, die insbesondere die Anregungszustände der Elektronen in den Quantenpunkten und die Einwirkungen des umgebenden Halbleiter-Materials berücksichtigten, hat der Bayreuther Physiker den resonanten Zweiphoton-Anregungsprozess mit hoher Genauigkeit modelliert. Erst diese Modellierung machte es möglich, die zuvor unerreichte Leistungsfähigkeit des neuen Versuchsaufbaus zu verifizieren. „In 86 Prozent aller Fälle führt die gezielte Anregung der Quantenpunkte durch Laserpulse in den Experimenten unserer Stuttgarter Kollegen dazu, dass ein Paar ununterscheidbarer und verschränkter Photonen erzeugt wird“, erklärt Dr. Gläßl. „Damit werden die eher bescheidenen Erfolgsraten, die in früheren Experimenten erzielt wurden, bei weitem übertroffen.“

Ein Meilenstein für die Entwicklung des Quanten-Computing

Das neue Verfahren, das sich jetzt als derart zuverlässig erwiesen hat, kommt nicht allein der Verschlüsselung von Daten mithilfe der Quantenkryptographie zugute. „Es ist ebenso ein Meilenstein für viele weitere Anwendungen der Quanteninformationstheorie, wie etwa das Quanten-Computing“, meint Dr. Gläßl. „Dabei handelt es sich um einen Computer, der die Gesetze der Quantenmechanik ausnutzt um Probleme zu lösen, die herkömmliche Rechner nicht effizient lösen können, wie etwa die Faktorisierung sehr großer Zahlen. Damit könnte man dann beispielsweise die heute gängigen Verschlüsselungsverfahren brechen.“

Dr. Martin Gläßl hat an der Universität Bayreuth ein Physikstudium absolviert und hier, gefördert durch ein Promotionsstipendium der Studienstiftung des deutschen Volkes im Jahre 2013, mit einer Arbeit über die quantendissipative Dynamik in optisch getriebenen Quantenpunkten promoviert. Derzeit arbeitet er an der Universität Bayreuth als Postdoktorand am Lehrstuhl Theoretische Physik III, der von Prof. Dr. Vollrath Martin Axt geleitet wird.

Veröffentlichung:

M. Müller, S. Bounouar, K. D. Jöns, M. Glässl and P. Michler,
On-demand generation of indistinguishable polarization-entangled photon pairs,
Nature Photonics 8, 224-228
DOI: 10.1038/nphoton.2013.377

Kontaktadresse für weitere Informationen:

Dr. Martin Gläßl
Lehrstuhl Theoretische Physik III
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-3328
E-Mail: martin.glaessl@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik