Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Verfahren fördert Quantenkryptographie und Quanten-Computing

04.03.2014

Daten sicher zu verschlüsseln, ist eine Herausforderung nicht nur für die Informatik, sondern auch für die physikalische Grundlagenforschung.

Am Physikalischen Institut der Universität Bayreuth hat Dr. Martin Gläßl jetzt durch theoretische Berechnungen gezeigt, wie leistungsstark ein neues Verfahren arbeitet, das von zentraler Bedeutung für die Quantenkryptographie – eine neuartige Verschlüsselungstechnologie – ist.


Dr. Martin Gläßl ist Postdoktorand am Lehrstuhl Theoretische Physik III der Universität Bayreuth.

Foto: Dr. Martin Gläßl; zur Veröffentlichung frei.

Das Verfahren wurde erst kürzlich an der Universität Stuttgart entwickelt. Im Forschungsmagazin „Nature Photonics“ berichten die Wissenschaftler gemeinsam über ihre wegweisenden Ergebnisse.

Voraussetzungen der Quantenkryptographie

Licht kann in der Physik alternativ als Teilchen oder als Welle beschrieben werden. Im Teilchenmodell des Lichts werden die Lichtquanten, also die kleinsten „Einheiten“ des Lichts, als Photonen bezeichnet. Die Quantenkryptographie ist eine Technologie, die vorwiegend mit Photonen arbeitet und eine abhörsichere Kommunikation ermöglicht.

Damit diese Technologie mit der angestrebten Zuverlässigkeit zum Einsatz kommen kann, müssen wiederholt – und zwar auf Knopfdruck und in genau definierten zeitlichen Abständen – einzelne Paare von Photonen erzeugt werden, die spezielle Eigenschaften besitzen.

Zunächst einmal müssen die Lichtquanten, die jeweils paarweise entstehen sollen, ununterscheidbar sein; sie müssen also beispielsweise die gleiche Wellenlänge aufweisen. Darüber hinaus ist es erforderlich, dass sie polarisationsverschränkt sind.

Dies bedeutet: Wird die Polarisation – also die Schwingungsrichtung – eines der beiden Photonen gemessen, kann dadurch zugleich die Polarisation des zweiten Photons ermittelt werden; und zwar unabhängig davon, wie weit die beiden Partnerphotonen räumlich voneinander entfernt sind, und obwohl die Polarisation jedes einzelnen der beiden Photonen vor der Messung komplett unbestimmt war.

Mit hoher Zuverlässigkeit realisiert: Photonenpaare „on demand“

Es war schon länger bekannt, dass nanostrukturierte Halbleiter, die in der Forschung als Quantenpunkte bezeichnet werden, für die Erzeugung solcher Photonenpaare besonders gut geeignet sind. Durch einen kurzen elektrischen oder optischen Puls können diese Punkte gezielt anregt werden, damit anschließend Photonen ausgesendet werden. Allerdings entstehen die Photonenpaare mit den gewünschten Eigenschaften und in vorhersagbarer Weise nur dann, wenn spezielle Voraussetzungen erfüllt sind: Der optische Puls – beispielsweise erzeugt von einem Laser – muss im Quantenpunkt zwei Elektronen simultan auf das gleiche höhere, exakt definierte Energieniveau heben; in diesem Fall entstehen parallel dazu zwei gleiche Elektronenfehlstellen, sogenannte Löcher. Fallen die Elektronen kurze Zeit später auf das niedrigere Niveau zurück, verschwinden die Löcher, und es werden zwei Photonen erzeugt: im Idealfall ununterscheidbar und polarisationsverschränkt.

Diesen Vorgang gleichsam auf Bestellung zu realisieren und in definierten Abständen zu wiederholen, gestaltet sich in der Praxis äußerst schwierig. Denn die verwendeten Objekte sind sehr klein: Ein Quantenpunkt hat eine Ausdehnung von nur wenigen Nanometern. Zudem ist die Dauer des verwendeten Laserpulses extrem kurz; sie liegt typischerweise im Bereich des billiardsten Teils einer Sekunde. Und nicht zuletzt kann die unmittelbare Umgebung der Quantenpunkte eine gezielte energetische Anregung störend beeinflussen.

Am Institut für Halbleiteroptik und Funktionelle Grenzflächen der Universität Stuttgart ist es nun jedoch einer experimentellen Arbeitsgruppe unter der Leitung von Prof. Dr. Peter Michler gelungen, diese Schwierigkeiten zu überwinden. Es wurde ein Versuchsaufbau entwickelt, der es über einen „resonanten Zweiphotonen-Anregungsprozess“ ermöglicht, mit hoher Zuverlässigkeit und auf Knopfdruck wiederholt einzelne Paare von Photonen zu erzeugen, die sowohl ununterscheidbar als auch polarisationsverschränkt sind. Damit sind die Grundlagen für ein Verfahren gelegt, das beispielsweise die Verschlüsselung von Daten mithilfe von Lichtquanten – aber auch weitere Technologien – erheblich voranbringen kann.

Theoretische Berechnungen verifizieren die experimentellen Erfolge

Wie konnte festgestellt werden, dass der neue Versuchsaufbau sich durch eine derart hohe Zuverlässigkeit auszeichnet? An dieser Stelle waren die Forschungsarbeiten von Dr. Martin Gläßl am Physikalischen Institut der Universität Bayreuth von zentraler Bedeutung. Mit theoretischen Berechnungen, die insbesondere die Anregungszustände der Elektronen in den Quantenpunkten und die Einwirkungen des umgebenden Halbleiter-Materials berücksichtigten, hat der Bayreuther Physiker den resonanten Zweiphoton-Anregungsprozess mit hoher Genauigkeit modelliert. Erst diese Modellierung machte es möglich, die zuvor unerreichte Leistungsfähigkeit des neuen Versuchsaufbaus zu verifizieren. „In 86 Prozent aller Fälle führt die gezielte Anregung der Quantenpunkte durch Laserpulse in den Experimenten unserer Stuttgarter Kollegen dazu, dass ein Paar ununterscheidbarer und verschränkter Photonen erzeugt wird“, erklärt Dr. Gläßl. „Damit werden die eher bescheidenen Erfolgsraten, die in früheren Experimenten erzielt wurden, bei weitem übertroffen.“

Ein Meilenstein für die Entwicklung des Quanten-Computing

Das neue Verfahren, das sich jetzt als derart zuverlässig erwiesen hat, kommt nicht allein der Verschlüsselung von Daten mithilfe der Quantenkryptographie zugute. „Es ist ebenso ein Meilenstein für viele weitere Anwendungen der Quanteninformationstheorie, wie etwa das Quanten-Computing“, meint Dr. Gläßl. „Dabei handelt es sich um einen Computer, der die Gesetze der Quantenmechanik ausnutzt um Probleme zu lösen, die herkömmliche Rechner nicht effizient lösen können, wie etwa die Faktorisierung sehr großer Zahlen. Damit könnte man dann beispielsweise die heute gängigen Verschlüsselungsverfahren brechen.“

Dr. Martin Gläßl hat an der Universität Bayreuth ein Physikstudium absolviert und hier, gefördert durch ein Promotionsstipendium der Studienstiftung des deutschen Volkes im Jahre 2013, mit einer Arbeit über die quantendissipative Dynamik in optisch getriebenen Quantenpunkten promoviert. Derzeit arbeitet er an der Universität Bayreuth als Postdoktorand am Lehrstuhl Theoretische Physik III, der von Prof. Dr. Vollrath Martin Axt geleitet wird.

Veröffentlichung:

M. Müller, S. Bounouar, K. D. Jöns, M. Glässl and P. Michler,
On-demand generation of indistinguishable polarization-entangled photon pairs,
Nature Photonics 8, 224-228
DOI: 10.1038/nphoton.2013.377

Kontaktadresse für weitere Informationen:

Dr. Martin Gläßl
Lehrstuhl Theoretische Physik III
Universität Bayreuth
D-95440 Bayreuth
Telefon: +49 (0)921 55-3328
E-Mail: martin.glaessl@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MADMAX: Ein neues Experiment zur Erforschung der Dunklen Materie
20.10.2017 | Max-Planck-Institut für Physik

nachricht Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung
20.10.2017 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochfeldmagnet am BER II: Einblick in eine versteckte Ordnung

Seit dreißig Jahren gibt eine bestimmte Uranverbindung der Forschung Rätsel auf. Obwohl die Kristallstruktur einfach ist, versteht niemand, was beim Abkühlen unter eine bestimmte Temperatur genau passiert. Offenbar entsteht eine so genannte „versteckte Ordnung“, deren Natur völlig unklar ist. Nun haben Physiker erstmals diese versteckte Ordnung näher charakterisiert und auf mikroskopischer Skala untersucht. Dazu nutzten sie den Hochfeldmagneten am HZB, der Neutronenexperimente unter extrem hohen magnetischen Feldern ermöglicht.

Kristalle aus den Elementen Uran, Ruthenium, Rhodium und Silizium haben eine geometrisch einfache Struktur und sollten keine Geheimnisse mehr bergen. Doch das...

Im Focus: Schmetterlingsflügel inspiriert Photovoltaik: Absorption lässt sich um bis zu 200 Prozent steigern

Sonnenlicht, das von Solarzellen reflektiert wird, geht als ungenutzte Energie verloren. Die Flügel des Schmetterlings „Gewöhnliche Rose“ (Pachliopta aristolochiae) zeichnen sich durch Nanostrukturen aus, kleinste Löcher, die Licht über ein breites Spektrum deutlich besser absorbieren als glatte Oberflächen. Forschern am Karlsruher Institut für Technologie (KIT) ist es nun gelungen, diese Nanostrukturen auf Solarzellen zu übertragen und deren Licht-Absorptionsrate so um bis zu 200 Prozent zu steigern. Ihre Ergebnisse veröffentlichten die Wissenschaftler nun im Fachmagazin Science Advances. DOI: 10.1126/sciadv.1700232

„Der von uns untersuchte Schmetterling hat eine augenscheinliche Besonderheit: Er ist extrem dunkelschwarz. Das liegt daran, dass er für eine optimale...

Im Focus: Schnelle individualisierte Therapiewahl durch Sortierung von Biomolekülen und Zellen mit Licht

Im Blut zirkulierende Biomoleküle und Zellen sind Träger diagnostischer Information, deren Analyse hochwirksame, individuelle Therapien ermöglichen. Um diese Information zu erschließen, haben Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT ein Mikrochip-basiertes Diagnosegerät entwickelt: Der »AnaLighter« analysiert und sortiert klinisch relevante Biomoleküle und Zellen in einer Blutprobe mit Licht. Dadurch können Frühdiagnosen beispielsweise von Tumor- sowie Herz-Kreislauf-Erkrankungen gestellt und patientenindividuelle Therapien eingeleitet werden. Experten des Fraunhofer ILT stellen diese Technologie vom 13.–16. November auf der COMPAMED 2017 in Düsseldorf vor.

Der »AnaLighter« ist ein kompaktes Diagnosegerät zum Sortieren von Zellen und Biomolekülen. Sein technologischer Kern basiert auf einem optisch schaltbaren...

Im Focus: Neue Möglichkeiten für die Immuntherapie beim Lungenkrebs entdeckt

Eine gemeinsame Studie der Universität Bern und des Inselspitals Bern zeigt, dass spezielle Bindegewebszellen, die in normalen Blutgefässen die Wände abdichten, bei Lungenkrebs nicht mehr richtig funktionieren. Zusätzlich unterdrücken sie die immunologische Bekämpfung des Tumors. Die Resultate legen nahe, dass diese Zellen ein neues Ziel für die Immuntherapie gegen Lungenkarzinome sein könnten.

Lungenkarzinome sind die häufigste Krebsform weltweit. Jährlich werden 1.8 Millionen Neudiagnosen gestellt; und 2016 starben 1.6 Millionen Menschen an der...

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Das Immunsystem in Extremsituationen

19.10.2017 | Veranstaltungen

Die jungen forschungsstarken Unis Europas tagen in Ulm - YERUN Tagung in Ulm

19.10.2017 | Veranstaltungen

Bauphysiktagung der TU Kaiserslautern befasst sich mit energieeffizienten Gebäuden

19.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden Hinweise auf verknotete Chromosomen im Erbgut

20.10.2017 | Biowissenschaften Chemie

Saugmaschinen machen Waschwässer von Binnenschiffen sauberer

20.10.2017 | Ökologie Umwelt- Naturschutz

Strukturbiologieforschung in Berlin: DFG bewilligt Mittel für neue Hochleistungsmikroskope

20.10.2017 | Förderungen Preise