Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neues Mikroskop für Nanoteilchen

24.06.2015

LMU/MPQ-Wissenschaftler können mit einem neuartigen Mikroskop die Details einzelner Nanopartikel abbilden.

Materialien aus Nanopartikeln spielen heute in vielen Bereichen des täglichen Lebens eine große Rolle. Entsprechend wichtig ist es, sowohl ihre äußere Form als auch ihre optischen und elektronischen Eigenschaften genau zu kennen und zu charakterisieren. Konventionelle optische Mikroskope können dies nicht leisten, denn die Partikelgröße – einige zig Nanometer – liegt weit unterhalb der Auflösungsgrenze von rund 400 nm.


Anschauliche Darstellung des neuen Verfahrens zur Mikroskopie von Nanoteilchen.

Grafik: Christoph Hohmann/NIM

Daher lässt sich z.B. auf die Form der Partikel nur aus deren spektralen Eigenschaften schließen. Da die Signale bei der Wechselwirkung von Licht mit einzelnen Nanoteilchen im Allgemeinen extrem schwach sind, wurden solche Untersuchungen bislang meist an Ensembles aus Tausenden von Partikeln durchgeführt.

Nun hat ein Team von Wissenschaftlern aus der Abteilung Laserspektroskopie von Prof. Theodor W. Hänsch (Direktor am MPQ und Lehrstuhl für Experimentalphysik an der LMU München) eine Methode entwickelt, die Signale mit Hilfe eines optischen Resonators um mehr als das 1000fache zu verstärken und gleichzeitig fast die räumliche Auflösung eines direkt abbildenden Mikroskops zu erzielen.

Die Möglichkeit, erstmals die optischen Eigenschaften eines einzelnen Nanopartikels oder Makromoleküls zu untersuchen, ist für viele Bereiche der Biologie, Chemie oder auch Nanotechnik von großem Interesse (Nature Communications, DOI: 10.1038/ncomms8249, 24. Juni 2015).

Spektroskopische Messungen an großen Ensembles von Nanoteilchen haben den Nachteil, dass die individuellen Unterschiede in Form und molekularer Zusammensetzung dabei verwischt werden. Deshalb interessiert man sich dafür, die einzelnen Teilchen selbst genauer zu untersuchen. „Unser Ansatz besteht darin, dass wir das Licht, das der Abbildung dient, in einem Resonator zig-tausendmal umlaufen lassen.

Dadurch erhöht sich die Wechselwirkung zwischen Teilchen und Lichtfeld, und das Signal ist leicht zu messen“, erklärt Dr. David Hunger, einer der Wissenschaftler am Experiment. „Bei einem normalen Mikroskop betrüge das Signal weniger als ein Millionstel der Eingangsleistung, und wäre nicht ohne weiteres messbar. Durch den Resonator wird das Signal nun ca. 50 000fach verstärkt.“

In dem von David Hunger und seinem Team aufgebauten Mikroskop wird die eine Seite des Resonators von einer Spiegelfläche gebildet, die gleichzeitig als Träger der zu untersuchenden Nanopartikel dient. Das Gegenstück ist ein sehr stark konkav gekrümmter Spiegel auf der Endfläche einer Glasfaser. Durch diese Faser wird auch das Laserlicht in den Resonator eingekoppelt.

Der Trägerspiegel wird Punkt für Punkt gegenüber der Faserspitze so verschoben, dass die einzelnen Partikel nach und nach in deren Fokus kommen. Dabei wird der Abstand zwischen den beiden Spiegeln stets so nachjustiert, dass die Resonanzbedingungen für das Auftreten von Schwingungsmoden erfüllt sind, das erfordert eine Genauigkeit im Pikometerbereich.

Für ihre ersten Messungen verwendeten die Wissenschaftler Goldkügelchen mit einem Durchmesser von 40 Nanometern. „Die Goldpartikel sind gewissermaßen unser Referenzsystem, da wir hier die Eigenschaften auch genau berechnen und somit die Validität unserer Messungen prüfen können“, meint David Hunger. „Da wir die optischen Eigenschaften des Messapparates sehr genau kennen, können wir aus den gemessenen Transmissionssignalen die optischen Eigenschaften der einzelnen Teilchen quantitativ bestimmen.“

Verglichen mit anderen Verfahren, die auch auf der direkten Signalverstärkung beruhen, ist das Lichtfeld auf einen sehr kleinen Raum begrenzt, sodass bei Nutzung der Grundmode eine räumliche Auflösung von 2 Mikrometern erreicht wird. Durch Hinzunahme der höheren Moden konnten die Wissenschaftler das Auflösungsvermögen sogar auf rund 800 Nanometer steigern.

Noch aussagekräftiger wird das Verfahren, wenn sowohl die Absorptionseigenschaften als auch die Polarisierbarkeit eines einzelnen Partikels bestimmt werden. Das ist insbesondere dann interessant, wenn die untersuchten Partikel nicht kugelförmig (d.h. eine sphärische Symmetrie haben), sondern z.B. länglich sind. Dann hängen die entsprechenden Größen nämlich davon ab, wie die Polarisation des Laserlichtes relativ zur Richtung der Symmetrieachsen des Objektes orientiert ist.

„In unserem Experiment verwenden wir Nanostäbchen (34 x 25 x 25 nm hoch 3) aus Gold und schauen uns an, wie sich die Resonanzfrequenz in Abhängigkeit von der Polarisation verschiebt. Ist die Polarisation parallel zur Stäbchenachse orientiert, dann verschiebt sich die Resonanz stärker als wenn sie orthogonal dazu ist, so dass sich zwei Resonanzfrequenzen für die beiden Polarisationsrichtungen ergeben“, erklärt Matthias Mader, Doktorand am Experiment. „Diese Doppelbrechung können wir nun sehr genau vermessen. Sie ist ein empfindlicher Indikator für die Form und Orientierung des Teilchens.“

„Als Anwendung unserer Methode könnten wir uns vorstellen, in Zukunft die zeitliche Dynamik von Makromolekülen zu untersuchen, wie z.B. die Faltungsdynamik von Proteinen“, meint David Hunger. „Insgesamt sehen wir ein großes Potential – von der Charakterisierung von Nanomaterialien und biologischen Nanosystemen bis hin zur Spektroskopie von Quanten-Emittern.“ Olivia Meyer-Streng

Originalveröffentlichung:

Matthias Mader, Jakob Reichel, Theodor W. Hänsch, and David Hunger
A Scanning Cavity Microscope
Nature Communications, DOI: 10.1038/ncomms8249, 24 June 2015

Kontakt:

Dr. David Hunger
Max-Planck-Institut für Quantenoptik, und
Ludwig-Maximilians-Universität München
Schellingstr. 4 /III, 80799 München
Telefon: +49 (0)89 / 21 80 -3937
E-Mail: david.hunger@physik.lmu.de

Prof. Dr. Theodor W. Hänsch
Professor für Experimentalphysik
Ludwig-Maximilians-Universität München
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 -712
E-Mail: t.w.haensch@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik, Garching b. München
Telefon: +49 (0)89 / 32 905 -213
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht MAIUS-1 – erste Experimente mit ultrakalten Atomen im All
24.01.2017 | Leibniz Universität Hannover

nachricht European XFEL: Forscher können erste Vorschläge für Experimente einreichen
24.01.2017 | European XFEL GmbH

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie