Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein neuer Blick auf das Magnetfeld der Sonne

20.03.2015

Max-Planck-Forscher finden heraus, wie sich die Stärke eines kommenden Aktivitätszyklus vorhersagen lässt

Sonnenflecken, Strahlungsausbrüche und heftige Eruptionen sind Anzeichen für eine permanente Aktivität unserer Sonne. Wie Forscher schon seit langem wissen, schwankt diese in einem Zyklus von etwa elf Jahren Länge.


Stürmischer Stern: Die Sonne gleicht einem gigantischen Gasball, dessen Aktivität von starken Magnetfeldern getrieben wird. Diese Aufnahme gewann der NASA-Satellit Solar Dynamics Observatory.

© NASA/SDO and the AIA, EVE, and HMI science teams

Auch wenn noch viele Fragen offen sind, so steht eines fest: Hinter der vielfältigen Aktivität stecken Magnetfelder, die aus dem Innern unseres Tagesgestirns an die Oberfläche treten. Robert Cameron und Manfred Schüssler vom Max-Planck-Institut für Sonnensystemforschung in Göttingen haben jetzt nachgewiesen, dass man allein aus der Beobachtung der magnetischen Vorgänge an der Oberfläche den inneren Mechanismus erschließen kann. Das ermöglicht sogar Vorhersagen über die Stärke eines kommenden Aktivitätszyklus.

Die Sonne ist ein riesiger Gasball, in dessen Innern heiße Gase strömen, aufsteigen und absinken. In diesem Inferno entsteht ein Magnetfeld, das in seiner Grundstruktur jenem der Erde ähnelt. Es besitzt die Form eines Dipols, dessen Magnetfeldlinien an den Sonnenpolen die Oberfläche durchstoßen.

Die Magnetfelder sind jedoch an das heiße, elektrisch leitende Gas gebunden und werden von ihm in komplizierter Weise gedehnt und verzogen – wie Gummibänder in Honig, den man rührt. So wird eine anfänglich zur Rotationsachse parallel verlaufende Magnetfeldlinie von dem rotierenden Gas mitgeschleppt.

Das Gas in der Äquatorregion bewegt sich jedoch wesentlich schneller als in mittleren und hohen Breiten. Dadurch werden die Feldlinien im Äquatorbereich in die Länge gezogen und wickeln sich im Laufe von mehreren Umdrehungen regelrecht auf: Es bildet sich ein ringförmiges Magnetfeld in Ost-West-Richtung, auch Toroidalfeld genannt.

Diese Magnetfeldlinien können sich zu dicken Bündeln vereinigen, die nach oben steigen, bis sie schließlich aus der Oberfläche austreten und eine Schlaufe formen. An den beiden Durchstoßpunkten entstehen die bekannten dunklen Sonnenflecken. Diese treten deshalb meistens paarförmig in Ost-West-Richtung auf und bilden jeweils einen magnetischen Nord- und Südpol. Innerhalb eines elfjährigen Zyklus ist die magnetische Orientierung bei allen Flecken identisch. Das Toroidalfeld besitzt also immer dieselbe Richtung.

„Bisher waren viele Fachleute der Meinung, dass die nach außen in Erscheinung tretenden magnetischen Phänomene lediglich die Symptome der inneren Vorgänge sind“, sagt Manfred Schüssler vom Max-Planck-Institut für Sonnensystemforschung in Göttingen. „Wir haben nun aber einen mathematischen Satz angewandt, den der irische Mathematiker und Physiker George Gabriel Stokes im 19. Jahrhundert bewiesen hat.“

Dieser Satz stellt einen Zusammenhang zwischen den Feldern an der Oberfläche und dem Innern eines Körpers her. Mit diesem rein mathematischen Argument haben die Wissenschaftler bewiesen, dass das an der Oberfläche der Sonne messbare Magnetfeld die einzige Quelle für das geordnete toroidale Feld im Sonneninnern ist, durch das wiederum die Aktivitätsphänomene des nachfolgenden Elf-Jahres-Zyklus bewirkt werden. „Was wir an der Oberfläche sehen, ist das relevante Feld“, sagt Schüssler. „Die Oberflächenphänomene sind, bildlich gesprochen, nicht der Schwanz des Hundes, sondern sie sind der Hund selbst.“

Im Vergleich mit Beobachtungsdaten konnten Robert Cameron und Manfred Schüssler zeigen, dass das Dipolfeld die bei Weitem dominierende Quelle des toroidalen Feldes ist. Damit haben sie ein Modell bestätigt, das die amerikanischen Astronomen Horace Babcock und Robert Leighton bereits in den 1960er-Jahren aufgestellt hatten.

Das ermöglicht es nun zudem, Vorhersagen über die Stärke eines kommenden Aktivitätszyklus zu machen. Im Verlaufe eines Elf-Jahres-Zyklus wechselt das Dipolfeld seine Richtung: Der magnetische Nordpol wird zum Südpol und umgekehrt. Das neue Dipolfeld erreicht seine maximale Stärke etwa in der Phase minimaler Sonnenaktivität.

Da das Dipolfeld die Quelle für das Toroidalfeld des nächsten Zyklus ist, sollte seine Stärke ein Maß für die Aktivität des nächsten Zyklus sein. Eine solche Korrelation wurde bereits festgestellt: „In der Phase des letzten Minimums um das Jahr 2009 herum war die Stärke des Dipolfeldes verhältnismäßig gering, dementsprechend schwach ist auch der jetzige Zyklus“, so Schüssler.

Zukünftig wird sich die Vorhersagekraft weiter überprüfen lassen. Bisher ist es nämlich sehr schwierig, die Stärke des Dipolfeldes zu messen, weil die Sonnenpole von der Erde kaum einsehbar sind. Das soll sich ändern, wenn 2017 der Solar Orbiter startet. Dieses Sonnenteleskop wird sich der Sonne bis auf ein Drittel des Abstandes Erde-Sonne nähern und sich auch über die Erdbahnebene hinaus erheben. Damit eröffnet es den Blick auf die Polregionen. Das Max-Planck-Institut für Sonnensystemforschung ist am Bau von vier Instrumenten an Bord des Solar Orbiter beteiligt, bei der Kamera namens Polarimetric and Helioseismic Imager hat es die Federführung.


Ansprechpartner

Dr. Birgit Krummheuer
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-462
E-Mail: krummheuer@mps.mpg.de
 
Dr. Robert Cameron
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-449
E-Mail: Cameron@mps.mpg.de

Prof. Dr. Manfred Schüssler
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon: +49 551 384979-469
E-Mail: schuessler@mps.mpg.de


Originalpublikation
Robert Cameron, Manfred Schüssler


The crucial role of surface magnetic fields for the solar dynamo

Science Bd. 347, S. 1333, 10.1126, science.1261470, 20. März 2015

Dr. Birgit Krummheuer | Max-Planck-Institut für Sonnensystemforschung, Göttingen
Weitere Informationen:
http://www.mpg.de/9054527/ein-neuer-blick-auf-das-magnetfeld-der-sonne

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften