Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nano-Kreisverkehr für Licht

09.12.2016

An der TU Wien gelang es, ein optisches Element auf der Nanoskala zu erzeugen, das den Fluss von Lichtteilchen am Kreuzungspunkt zweier Glasfasern wie ein Kreisverkehr regelt. Zur Kontrolle der Lichtwege wurde ein einzelnes Atom verwendet.

Wie im normalen Straßenverkehr sind auch in der optischen Signalverarbeitung Kreuzungen unverzichtbar. Zum Vermeiden von Kollisionen bedarf es dabei einer klaren Verkehrsregel. An der TU Wien wurde nun eine neue Methode entwickelt, mit der man eine solche Regel für Lichtsignale vorgeben kann.


Funktionsweise des Nanokreisverkehrs


Prof. Arno Rauschenbeutel

Hierzu wurden die Glasfasern am Kreuzungspunkt an einen optischen Resonator gekoppelt, in dem das Licht umläuft, und sich wie in einem Kreisverkehr verhält. Die Umlaufrichtung wird hierbei durch ein einzelnes Atom im Resonator vorgegeben. Das Atom sorgt außerdem dafür, dass das Licht immer bei der unmittelbar nächsten Ausfahrt den Kreisverkehr verlässt.

Diese Kreisverkehr-Regelung gilt auch dann noch, wenn das Licht bloß aus einzelnen Photonen besteht. Ein solcher Kreisverkehr soll sich nun auch in integrierten optischen Chips einbauen lassen – ein wichtiger Schritt für die optische Signalverarbeitung.

Signalverarbeitung mittels Lichts statt Elektronik

Als „optische Zirkulatoren“ bezeichnet man Elemente am Kreuzungspunkt zweier zueinander senkrecht stehender Lichtleiter, die Lichtsignale von einem in den jeweils anderen Lichtleiter umleiten, so dass sich die Laufrichtung des Lichts beispielsweise immer um 90° im Uhrzeigersinn ändert. „Für sich frei ausbreitende Lichtstrahlen gibt es solche Komponenten schon lange“, sagt Arno Rauschenbeutel vom Vienna Center for Quantum Science and Technology am Atominstitut der TU Wien.

„Solche optischen Zirkulatoren beruhen meistens auf dem sogenannten Faraday-Effekt: Man legt ein starkes Magnetfeld an ein transparentes Material an, das sich zwischen zwei gegeneinander verdrehten Polarisationsstrahlteilern befindet. Die Richtung des Magnetfelds bricht dabei die Symmetrie und legt fest, in welche Richtung das Licht umgeleitet wird.“

Auf den Größenskalen der Nanotechnologie lässt sich ein solches Bauteil mit Faraday-Effekt aber aus technischen Gründen nicht realisieren – Bedarf dafür gäbe es. „Man versucht heute, optische integrierte Schaltkreise zu bauen, mit ähnlichen Funktionen wie man sie aus der Elektronik kennt“, erklärt Rauschenbeutel. Andere Methoden, die Symmetrie des Lichts zu brechen, funktionieren nur bei sehr hohen Lichtintensitäten oder leiden an hohen optischen Verlusten – in der Nanotechnologie möchte man aber kleinste Lichtsignale verarbeiten können, bis hin zu Lichtpulsen, die bloß aus einzelnen Photonen bestehen.

Zwei Glasfasern und eine Flasche für Licht

Das Team von Arno Rauschenbeutel geht einen ganz anderen Weg: Man koppelt ein einzelnes Rubidium-Atom an das Lichtfeld eines sogenannten „Flaschen-Resonators“ – ein mikroskopisches bauchig geformtes Glasobjekt, an dessen Oberfläche das Licht im Kreis läuft. Bringt man einen solchen Resonator in die Nähe zweier ultradünner lichtleitender Glasfasern, dann koppeln die Systeme aneinander.

Ohne Atom wechselt das Licht von einer Glasfaser über den Flaschen-Resonator in die jeweils andere Faser. Auf diese Weise ist jedoch noch kein Umlaufsinn für den Zirkulator festgelegt: Licht, welches auf diese Weise um 90° im Uhrzeigersinn umgelenkt wird, kann den gleichen Weg auch rückwärts – und damit gegen den Uhrzeigersinn – durchlaufen.

Um diese Vorwärts-Rückwärts-Symmetrie zu brechen, wird zusätzlich ein Atom an den Resonator gekoppelt, welches das Einkoppeln des Lichts und somit das Überkoppeln in die andere Glasfaser für eine der beiden Umlaufrichtungen verhindert. Für diesen Trick nutzt man an der TU Wien eine besondere Eigenschaft des Lichtes aus: Die Schwingungsrichtung der Lichtwelle, auch Polarisation genannt.

Durch die Wechselwirkung zwischen der Lichtwelle und dem Flaschen-Resonator entsteht ein ungewöhnlicher Schwingungszustand. „Die Polarisation dreht sich wie der Rotor eines Helikopters“, sagt Arno Rauschenbeutel. Die Drehrichtung hängt dabei davon ab, ob das Licht im Resonator gegen oder mit dem Uhrzeigersinn umläuft: Einmal schwingt das Licht im Uhrzeigersinn, einmal dagegen. Umlaufsinn und Schwingungszustand des Lichts sind also fest miteinander verknüpft.

Wenn man nun das Rubidium-Atom richtig präpariert und an den Resonator koppelt, kann man erreichen, dass es sich in Bezug auf die beiden Licht-Rotationsrichtungen unterschiedlich verhält. „Das im Uhrzeigersinn umlaufende Licht wird vom Atom nicht beeinflusst. Das in entgegengesetzter Richtung umlaufende Licht koppelt dagegen stark an das Atom und kann deshalb nicht in den Resonator eintreten“, sagt Arno Rauschenbeutel. Diese Asymmetrie der Licht-Atom-Kopplung bezüglich des Umlaufsinns des Lichts ermöglicht die gewünschte Funktionsweise eines Zirkulators, wobei der gewünschte Umlaufsinn über den internen Zustand des Atoms eingestellt werden kann.

Der Atomzustand als Quanten-Schalter

„Da wir nur ein einzelnes Atom verwenden, können wir den Prozess noch viel subtiler steuern“, erklärt Rauschenbeutel. „Man kann dieses Atom dann in einen Zustand versetzen, in dem beide Verkehrsregeln gleichzeitig gelten: Alle Lichtteilchen durchlaufen den Zirkulator gemeinsam, sowohl im als auch gegen den Uhrzeigersinn.“ Nach den Regeln der klassischen Physik ist dies zum Glück unmöglich, würde es doch im Straßenverkehr zu einem Chaos führen. In der Quantenphysik sind solche Überlagerungen unterschiedlicher Zustände aber erlaubt und eröffnen ganz neue, spannende Möglichkeiten für die optische Verarbeitung von Quanteninformation.

Originalpublikation:
Quantum optical circulator controlled by a single chirally coupled atom, Science 10.1126/science.aaj2118 (2016)

Bilderdownload: http://www.tuwien.ac.at/dle/pr/aktuelles/downloads/2016/nano_kreisverkehr

Rückfragehinweis
Dr. Jürgen Volz
Technische Universität Wien
Vienna Center for Quantum Science and Technology
Atominstitut
Stadionallee 2, 1020 Wien
T: +43-1-58801-141739
jvolz@ati.ac.at

Prof. Arno Rauschenbeutel
Technische Universität Wien
Vienna Center for Quantum Science and Technology
Atominstitut
Stadionallee 2, 1020 Wien
T: +43-1-58801-141761
arno.rauschenbeutel@tuwien.ac.at

Aussender:
Büro für Öffentlichkeitsarbeit
Technische Universität Wien
Resselgasse 3, 1040 Wien
T.: +43-1-58801-41024
pr@tuwien.ac.at

Quantum Physics & Quantum Technologies ist – neben Computational Science & Engineering, Materials & Matter, Information & Communication Technology sowie Energy & Environment – einer von fünf Forschungsschwerpunkten der Technischen Universität Wien. Erforscht werden mögliche Anwendungen von Quantenphänomenen. Diese reichen von fundamentalen Wechselwirkungen der Elementarteilchen über Strahlungsquellen für ultrakurze Photonenpulse bis hin zur Steuerung der Zustände einzelner Atome und damit zu Bauelementen für den Quantencomputer.

TU Wien - Mitglied der TU Austria

www.tuaustria.at 

Dr. Florian Aigner | Technische Universität Wien

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie