Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Molekül-Transistor für die Quantenwelt

13.07.2015

Einem internationalen Forscherteam unter Leitung des Paul-Drude-Instituts ist es gelungen, einen Transistor aus einem einzigen Molekül zu bauen. Dieser misst nur eineinhalb Nanometer und hat quantenmechanische Eigenschaften. Damit können die Forscher grundlegende physikalische Erkenntnisse gewinnen, die für weitere Schritte zur Elektronik in der Quantenwelt dienen. Ihre Ergebnisse sind in Nature Physics (August 2015) erschienen.

Transistoren als grundlegende Bauelemente für die Mikroelektronik werden immer kleiner. Das Ausgangsmaterial ist in der Regel ein Halbleiter.


Einzelnes Phthalozyanin-Molekül, das auf einer Indium-Arsenid-Oberfläche angelagert ist und von zwölf Indiumatomen umgeben wird.

Mit zwei Elektroden (Source und Drain) lässt sich eine Spannung anlegen, so dass Strom im Halbleiter fließt, mit einer weiteren Steuerelektrode (Gate) lässt sich der Fluss der Elektronen beeinflussen. So kann man mit einem Transistor den Strom an- und abschalten sowie die Stärke regeln. Dabei fließen im Halbleiter Abermillionen von Elektronen, die sich als geladene Teilchen beschreiben lassen.

Eine ähnliche Transistorfunktion auf einer Größenskala von einigen zehn bis hundert Nanometern erhält man durch einen sogenannten Quantenpunkt. Dieser besteht aus hunderten bis tausenden Atomen, die in Form eines winzigen Halbleiter-Kristalls auf einem geeigneten Substrat abgeschieden werden. Bei einem solchen Transistor können die Elektronen nur noch diskrete Energieniveaus annehmen.

Stromfluss kommt dann zum Beispiel dadurch zustande, dass ein einzelnes Elektron von der Source-Elektrode zum Halbleiter-Quantenpunkt springt, und von dort weiter zur Drain-Elektrode. Das nennt man Einzelelektronentunneln.

Mit einer zusätzlichen Gate-Elektrode kann man das Niveau verschieben und beeinflusst damit die Wahrscheinlichkeit, dass Elektronen durch den Halbleiter hindurchkommen und somit die Stromrate. In diesen Dimensionen der Quantenphysik besitzen die Elektronen sowohl Teilchen- als auch Welleneigenschaften.

Allerdings sind herkömmliche Quantenpunkte nicht absolut identisch, da sie durch das Abscheiden der Atome auf einem Substrat mit den Unwägbarkeiten eines statistischen Wachstumsprozesses behaftet sind. Das Forscherteam wollte ein kleines System aufbauen, von dem ganz genau bekannt ist, wie es aussieht. Ihre Idee: Sie verwenden ein organisches Molekül als Quantenpunkt.

Dieses ist chemisch genau definiert, und auch ein Molekül hat immer diskrete Zustände in Analogie zum Quantenpunkt. Das Knifflige an der Sache besteht darin, die Kontakte und die Steuerelektrode an ein 1,3 Nanometer großes Molekül anzubringen.

Es gibt schon verschiedene Techniken, wie etwa die Methode der Bruchkontakte. Dafür wird ein dünner Draht immer wieder sehr präzise an derselben Stelle gebogen, bis er bricht. Befindet sich der Draht in einer Flüssigkeit mit Molekülen, kann mit Glück genau ein Molekül die Bruchstelle überbrücken. Dafür sind allerdings sehr viele Versuche nötig, und man kann hinterher auch nicht mit atomarer Auflösung nachschauen, wie das Molekül auf den Kontakten sitzt.

Der Forschergruppe um Stefan Fölsch vom Paul-Drude-Institut ist es nun gelungen, einen Molekül-Transistor mit atomarer Präzision aufzubauen. Auf der Oberfläche eines Indium-Arsenid-Kristalls haben die Physiker ein organisches Phthalocyanin-Molekül abgeschieden. Mit der Spitze eines Rastertunnelmikroskops (STM), mit der man normalerweise die Oberfläche abtastet, um sie abzubilden, positionierten sie anschließend einzelne positiv geladene Indiumatome um das Molekül herum auf die Kristalloberfläche.

Und schon war der Mini-Transistor fertig: Als Elektroden fungieren zum einen die Kristalloberfläche, zum anderen die STM-Spitze. Die Steuerspannung wird geregelt durch Verschieben der Indiumatome. Stefan Fölsch berichtet: „Wir wissen ganz genau, wie die Kontakte und die Gate-Elektrode angelagert sind, und wir können mit atomarer Präzision die Steuerspannung kontrollieren.“

Und die Physiker haben auch gleich ein neues Phänomen beobachtet, das beim Halbleiter-Quantenpunkt nicht auftritt: Das Molekül sitzt, anders als die Atome eines Quantenpunktes, nicht fest auf der Oberfläche, sondern es kann sich drehen. Der Ladungszustand und die Rotation beeinflussen sich gegenseitig, was zu einer neuartigen Strom-Spannungs-Charakteristik des Transistors führt.

Eine Bauanleitung für einen Molekültransistor zur Herstellung eines elektronischen Bauelements liefern die Forscher damit nicht. Erst einmal geht es darum, die grundlegenden physikalischen Prozesse zu verstehen, die eine Quantenelektronik basierend auf einzelnen Molekülen überhaupt erst ermöglichen.

Abb. 1: Einzelnes Phthalozyanin-Molekül, das auf einer Indium-Arsenid-Oberfläche angelagert ist und von zwölf Indiumatomen umgeben wird. Die Atome sind elektrisch geladen und wirken so als Steuerelektrode des Einzelmolekültransistors.

Publikation
J. Martínez-Blanco1*, C. Nacci1*, S. C. Erwin2, K. Kanisawa3, E. Locane4*, M. Thomas4*, F. v. Oppen4, P. W. Brouwer4, S. Fölsch1, Gating a single-molecule transistor with individual atoms, Nature Physics, volume 11, issue 8 (2015)
1 Paul-Drude-Institut für Festkörperelektronik, Germany
2 U.S. Naval Research Laboratory, United States
3 NTT Basic Research Laboratories, Japan
4 Freie Universität Berlin, Germany

* Förderung durch die Deutsche Forschungsgemeinschaft (DFG), SFB 658

DOI: 10.1038/NPHYS3385

Kontakt
Dr. Stefan Fölsch
Paul-Drude-Institut für Festkörperelektronik
Hausvogteiplatz 5-7
10117 Berlin
phone: +49 30 20377 459
email: foelsch@pdi-berlin.de

Das Paul-Drude-Institut für Festkörperelektronik (PDI) gehört zum Forschungsverbund Berlin e.V. (FVB), einem Zusammenschluss von acht natur-, lebens- und umweltwissenschaftlichen Instituten in Berlin. In ihnen arbeiten mehr als 1.500 Mitarbeiter. Die vielfach ausgezeichneten Einrichtungen sind Mitglieder der Leibniz-Gemeinschaft. Entstanden ist der Forschungsverbund 1992 in einer einzigartigen historischen Situation aus der ehemaligen Akademie der Wissenschaften der DDR.

Weitere Informationen:

http://www.pdi-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Quantenverschränkung auf den Kopf gestellt
22.05.2018 | Universität Innsbruck

nachricht Kosmische Ravioli und Spätzle
22.05.2018 | Universität Bern

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Kosmische Ravioli und Spätzle

Die inneren Monde des Saturns sehen aus wie riesige Ravioli und Spätzle. Das enthüllten Bilder der Raumsonde Cassini. Nun konnten Forscher der Universität Bern erstmals zeigen, wie diese Monde entstanden sind. Die eigenartigen Formen sind eine natürliche Folge von Zusammenstössen zwischen kleinen Monden ähnlicher Grösse, wie Computersimulationen demonstrieren.

Als Martin Rubin, Astrophysiker an der Universität Bern, die Bilder der Saturnmonde Pan und Atlas im Internet sah, war er verblüfft. Die Nahaufnahmen der...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Raumschrott im Fokus

Das Astronomische Institut der Universität Bern (AIUB) hat sein Observatorium in Zimmerwald um zwei zusätzliche Kuppelbauten erweitert sowie eine Kuppel erneuert. Damit stehen nun sechs vollautomatisierte Teleskope zur Himmelsüberwachung zur Verfügung – insbesondere zur Detektion und Katalogisierung von Raumschrott. Unter dem Namen «Swiss Optical Ground Station and Geodynamics Observatory» erhält die Forschungsstation damit eine noch grössere internationale Bedeutung.

Am Nachmittag des 10. Februars 2009 stiess über Sibirien in einer Höhe von rund 800 Kilometern der aktive Telefoniesatellit Iridium 33 mit dem ausgedienten...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics