Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Molekül auf der optischen Flüstergalerie

08.09.2014

Mit einer Mikrokugel und einem Nanodrähtchen lassen sich einzelne unmarkierte Biomoleküle durch Licht nachweisen

Einzelne Biomoleküle aufzuspüren und sie bei der Arbeit zu beobachten – das ist ein Traum von Biochemikern. Denn auf diese Weise könnten sie die Arbeitsweise der Nanomaschinen des Lebens, wie etwa der Ribosomen oder der DNA-Polymerasen, detailliert untersuchen und besser verstehen.


Sensibel für einzelne Teilchen: Eine gläserne Mikrokugel und ein darauf befestigtes Nanodrähtchen aus Gold verstärken Licht so stark, dass sich damit auch einzelne DNA-Fragmente nachweisen lassen. Die DNA-Teilstränge binden dabei an Teilstränge, die auf dem Nanodrähtchen angebracht sind.

© Joseph Alexander/Rockefeller University


Max-Planck-Forscher um Frank Vollmer versehen Mikrokugeln mit goldenen Nanodrähten, an denen Moleküle binden können. Diese lassen sich nachweisen, da sich die Wellenlänge des Lichts verschiebt, das durch die Mikrokugel und ein Nanodrähtchen verstärkt wird.

© MPI für die Physik des Lichts

Diesem Ziel sind Forscher des Max-Planck-Institutes für die Physik des Lichtes nun einen wesentlichen Schritt nähergekommen. Mit einer optischen Mikrostruktur und Nanopartikeln aus Gold haben sie die Wechselwirkung von Licht mit dem Erbgutmolekül DNA so weit verstärkt, dass sie die Interaktion zwischen einzelnen DNA-Molekülteilen verfolgen können.

Sie gingen damit an die Grenze des physikalisch Möglichen. Ihr optischer Biosensor für einzelne, unmarkierte Moleküle könnte auch für Biochips relevant sein: fingernagelgroße Mini-Labore, die einen Tropfen Blut in mobilen Analysegeräten schnell auf mehrere Krankheiten gleichzeitig testen oder mit wenig Probenmaterial umfassende Umweltanalysen ermöglichen.

Zu wissen, wie einzelne Biomoleküle miteinander interagieren, ermöglicht erst das Verständnis grundlegender Lebensprozesse. In den Zellen fügen Nanomaschinen wie etwa Ribosomen und DNA-Polymerasen einzelne Moleküle zu komplexen biologischen Strukturen wie Proteinen beziehungsweise DNA-Molekülen zusammen, in denen Erbinformation gespeichert ist. Zwar lässt sich die Interaktion einzelner Moleküle mit Enzymen oder Ribosomen durchaus untersuchen.

Doch dafür müssen die Moleküle oft zum Beispiel mit Leuchtstoffen markiert werden, um sie beobachten zu können. Doch diese Markierung ist nur bei bestimmten Molekülen möglich und kann die Funktion der biologischen Nanomaschinen einschränken. Biomoleküle lassen sich zwar auch ohne Markierung mit Licht nachweisen. Dabei können aber keine einzelnen DNA-Moleküle detektiert werden, weil die Wechselwirkung der Lichtwellen mit den Molekülen dafür zu schwach ist.

Physiker um Frank Vollmer vom Labor für Nanophotonik und Biosensorik am Max-Planck-Institut für die Physik des Lichtes ist es nun gelungen, die Wechselwirkung von Licht mit DNA-Molekülen so weit zu verstärken, dass sie mit ihrem photonischen Biosensor einzelne, unmarkierte Moleküle und deren Interaktionen untereinander beobachten können.

Eine Mikrokugel wird zur optischen Flüstergalerie

Dazu nutzen sie Glaskügelchen von rund 60 Mikrometern Durchmesser, was etwa der Dicke eines Haares entspricht, und Nanodrähtchen aus Gold von etwa 12 Nanometern Durchmesser und 42 Nanometern Länge. Das Golddrähtchen ist also nur etwa ein 10000stel so dick wie ein Haar. Mikrokugel und Nanodrähtchen verstärken die Wechselwirkung zwischen Licht und Molekülen.

Mittels eines Prismas koppelten die Forscher Laserlicht in die Mikrokugel ein. Das Licht wird immer wieder an der Innenseite der Kugeloberfläche reflektiert, sodass es letztlich an dessen Innenseite entlangläuft, ähnlich wie Schallwellen, die sich entlang der Wände von manchen runden Räumen ausbreiten: Flüstert eine Person an einer Seite des Gewölbes, kann sie eine andere Person an der gegenüberliegenden Seite verstehen, auch wenn sie dafür eigentlich zu weit entfernt steht. Denn die Schallwellen verlieren nicht an Intensität, während sie sich ausbreiten.

Wenn ein Molekül an der Oberfläche des Glaskügelchens gebunden ist, kommt der Lichtstrahl mehr als hunderttausend Mal an ihm vorbei. Da die Lichtwelle stets etwas aus der Mikrokugel herauslappt, kommt es zwischen ihr und dem Molekül zur Wechselwirkung, die durch den häufigen Kontakt zwischen Licht und Molekül deutlich verstärkt. Doch die Wechselwirkung ist immer noch zu schwach, um einzelne Moleküle zu registrieren.

Daher bringen Vollmer und seine Kollegen Nanodrähtchen auf der Oberfläche der Glaskügelchen an. In ihnen erzeugt das vorbeikommende Licht so genannte Plasmonen: kollektive Schwingungen von Elektronen. „Die Plasmonen ziehen die Lichtwelle etwas weiter aus der Glaskugel heraus“, erklärt Vollmer. Dadurch verstärke sich die Feldstärke der Lichtwelle um mehr als den Faktor 1000.

Insgesamt reicht die Verstärkung des Detektors nun aus, um einzelne Biomoleküle wie etwa DNA-Fragmente nachzuweisen. Und das haben die Erlanger Forscher auch getan. Zu diesem Zweck befestigten sie an dem Nanodrähtchen auf einem Mikrokügelchen den Teilstrang eines DNA-Moleküls, das im Zellkern stets als Doppelstrang vorliegt. Bindet nun der dazu passende, also komplementäre DNA-Teilstrang an den Köder auf dem Nanodrähtchen, so verschiebt sich die Wellenlänge des Lichts, das durch die Mikrokugel und das Nanodrähtchen verstärkt wird. Diese Verschiebung lässt sich messen.

Verschiedene Teilstränge lassen sich durch ihr Bindungsverhalten unterscheiden

Die Physiker verwendeten allerdings einen kürzeren Teilstrang, als dies bei ähnlichen Verfahren üblich ist. Kürzere DNA-Fragmente haften wie ein kurzer Klebestreifen an einer Wand schlechter aneinander, sodass sich die Stränge relativ schnell wieder trennen. So können immer wieder neue Teilstränge an dem molekularen Köder binden, und zwar auch solche, die nicht vollkommen zu ihm passen. So lässt sich erforschen, wie lange die Teilstränge miteinander wechselwirken und wie oft der Köder einen Teilstrang einfängt.

„Dieser Ansatz ermöglicht es, einen einzelnen DNA-Rezeptor zu benutzen und dessen sukzessive Interaktionen mit verschiedenen Teilsträngen in der Probenlösung zu verfolgen“, sagt Frank Vollmer. „Anhand der Dauer und Häufigkeit der gemessenen Interaktionen lassen sich dann verschiedene unmarkierte DNA-Moleküle spezifisch nachweisen.“

Die Forscher testeten ihren optischen Biosensor mit einer Probe, die sowohl einen exakt passenden DNA-Teilstrang als auch ein Fragment enthielt, das nicht ganz so gut passte. Anhand der unterschiedlichen Reaktionskinetik der beiden Teilstränge konnten die Forscher diese unterscheiden.

Auch in der Natur sind die Bindungen zwischen Nanomaschinen und Molekülen vorübergehend. Diese natürliche Kinetik lasse sich durch die neue Methode der Erlanger Forscher nun besser erforschen lasse, sagt Frank Vollmer „Da gibt es sehr viel Forschungsbedarf“, freut sich der Physiker auf die künftigen Aufgaben.

Die Erlanger planen nun entsprechende Forschungsprojekte. „Es lässt sich beispielsweise beobachten, wie ein Enzym wie etwa die DNA-Polymerase Stoffe umwandelt“, erklärt Vollmer. Zudem wollen die Wissenschaftler ihren photonischen Biodetektor in optische Mikrochips integrieren, um sie in der klinischen Diagnostik zur Anwendung zu bringen.

Ansprechpartner 

PD Dr. rer. nat. Frank Vollmer, PhD

Labor für Nanophotonik und Biosensorik

Max-Planck-Institut für die Physik des Lichts, Erlangen

Telefon: +49 91 3168-77480

 

Originalpublikation

 
Martin D. Baaske, Matthew R. Foreman, Frank Vollmer
Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform

Nature Nanotechnology, online veröffentlicht 31. August 2014;
DOI: 10.1038/NNANO.2014.180

PD Dr. rer. nat. Frank Vollmer, PhD | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8400987/biosensor_molekuel_unmakiert

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neue Arten in der Nordsee-Kita

05.12.2016 | Biowissenschaften Chemie

Alter beeinflusst den Mikronährstoffgehalt im Blut

05.12.2016 | Biowissenschaften Chemie

Planungstool für die Energiewende: Open Source Plattform für Stromnetze

05.12.2016 | Energie und Elektrotechnik