Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Komet spuckt Staub

27.10.2014

Bilder von 67P/Churyumov-Gerasimenko zeigen auf dem Kern eindrucksvolle Fontänen

Die Aktivität des Kometen 67P/Churyumov-Gerasimenko beginnt deutlich zuzunehmen. Der Staub, den der Schweifstern in den vergangenen Monaten ins All spuckte, stammte zum Großteil von der Halsregion, welche die beiden Teile des Kometen verbindet. Neue Bilder von 67P, die mithilfe des wissenschaftlichen Kamerasystems OSIRIS an Bord der ESA-Raumsonde Rosetta aufgenommen wurden, zeigen nun, dass Fontänen aus Staub auch an anderen Stellen der Oberfläche auftreten.


Ein Komet erwacht: Die beiden Ansichten zeigen dieselbe Region auf dem Hals von 67P/Churyumov-Gerasimenko. Das rechte Bild wurde mit einer Belichtungszeit von weniger als einer Sekunde aufgenommen. Die linke Aufnahme wurde überbelichtet (Belichtungszeit: 18,45 Sekunden), sodass Oberflächenstrukturen nicht voll zur Geltung kommen. Stattdessen zeigen sich Fontänen aus Staub, welche die Oberfläche verlassen. Die Bilder wurden mit der Weitwinkelkamera von OSIRIS, dem wissenschaftlichen Kamerasystem an Bord von Rosetta, am 20. Oktober aus einer Entfernung von 7,2 Kilometern aufgenommen.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Aktiver Kern: Dieses Bild der OSIRIS-Kamera vom 10. September zeigt Staubfontänen an mehreren Stellen der Kometenoberfläche.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/NTA/UPM/DASP/IDA

„Wir glauben, dass zum jetzigen Zeitpunkt ein großer Teil der beleuchteten Oberfläche des Kometen einen gewissen Grad von Aktivität zeigt“, sagt OSIRIS-Wissenschaftler Jean-Baptiste Vincent vom Max-Planck-Institut für Sonnensystemforschung in Göttingen. In den vergangenen Wochen konnte seine Gruppe eine langsame, aber qualitative Veränderung beobachten. „Bereits im Sommer zeigten erste Bilder ausgeprägte Staubfontänen, welche die Kometenoberfläche verließen“, so Max-Planck-Forscher Holger Sierks, Leiter des OSIRIS-Teams. „Diese Fontänen beschränkten sich jedoch auf die Halsregion. Mittlerweile treten sie aber auch am Körper und Kopf des Kometen auf.“

Derzeit trennen 67P noch mehr als 450 Millionen Kilometer von der Sonne. Basierend auf erdgebundenen Beobachtungen erwarten Wissenschaftler in der Regel, dass die Aktivität eines Kometen erst dann merklich zunimmt, wenn er sich der Sonne bis auf etwa 300 Millionen Kilometer angenähert hat. „Erstmals verfolgen wir die Staubemissionen ganz aus der Nähe“, so Sierks. Die Forscher hoffen, dass die OSIRIS-Aufnahmen helfen werden zu verstehen, wie sich Kometenaktivität entwickelt und welche physikalischen Prozesse dabei eine Rolle spielen.

Da der vergleichsweise helle Kometenkern die Staubfontänen unter normalen Bedingungen überstrahlen würde, mussten die aktuellen Aufnahmen deutlich überbelichtet werden. „Zudem kann uns ein einzelnes Bild nur sehr wenig verraten“, sagt Sierks. „Wir können daraus nicht schließen, an welcher Stelle an der Oberfläche eine Fontäne ihren Ursprung nimmt.“ Stattdessen vergleichen die Forscher Bilder derselben Region, die aus verschiedenen Blickwinkeln aufgenommen wurden. Auf diese Weise lässt sich dann die dreidimensionale Struktur der Fontänen rekonstruieren.

Während die gesamte Aktivität von 67P zunimmt, erscheint die ausgewählte Landestelle der Mission auf dem Kopf des Kometen noch recht ruhig zu sein. Allerdings gibt es Hinweise, dass dort in einer Entfernung von etwa einem Kilometer derzeit neue aktive Regionen erwachen. Dies würde es den Instrumenten der Landeeinheit Philae ermöglichen, die Aktivität des Kometen aus noch geringerer Entfernung zu untersuchen.

Rosetta ist eine Mission der Europäischen Weltraumagentur ESA mit Beiträgen der Mitgliedsstaaten und der amerikanischen Weltraumagentur NASA. Rosettas Landeeinheit Philae wurde von einem Konsortium unter Leitung des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Max-Planck-Instituts für Sonnensystemforschung (MPS) und der französischen und italienischen Weltraumagentur (CNES und ASI) zur Verfügung gestellt. Rosetta ist die erste Mission in der Geschichte, die einen Kometen anfliegt, ihn auf seinem Weg um die Sonne begleitet und eine Landeeinheit auf seiner Oberfläche absetzt.

Das wissenschaftliche Kamerasystem OSIRIS wurde von einem Konsortium unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Zusammenarbeit mit CISAS, Universität Padova (Italien), Laboratoire d'Astrophysique de Marseille (Frankreich), Instituto de Astrofísica de Andalucia, CSIC (Spanien), Scientific Support Office der ESA (Niederlande), Instituto Nacional de Técnica Aeroespacial (Spanien), Universidad Politéchnica de Madrid (Spanien), Department of Physics and Astronomy of Uppsala University (Schweden) und dem Institut für Datentechnik und Kommunikationsnetze der TU Braunschweig gebaut. OSIRIS wurde finanziell unterstützt von den Weltraumagenturen Deutschlands (DLR), Frankreichs (CNES), Italiens (ASI), Spaniens (MEC) und Schwedens (SNSB).

Ansprechpartner

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 551 384979-462
 

Dr. Holger Sierks

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 551 384979-242

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8718016/67p_churyumov-gerasimenko_staub

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Forscher finden «Krebssignatur» in Proteinen

05.12.2016 | Biowissenschaften Chemie

Wichtiger Prozess für Wolkenbildung aus Gasen entschlüsselt

05.12.2016 | Geowissenschaften

Frühwarnsignale für Seen halten nicht, was sie versprechen

05.12.2016 | Ökologie Umwelt- Naturschutz