Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Komet spuckt Staub

27.10.2014

Bilder von 67P/Churyumov-Gerasimenko zeigen auf dem Kern eindrucksvolle Fontänen

Die Aktivität des Kometen 67P/Churyumov-Gerasimenko beginnt deutlich zuzunehmen. Der Staub, den der Schweifstern in den vergangenen Monaten ins All spuckte, stammte zum Großteil von der Halsregion, welche die beiden Teile des Kometen verbindet. Neue Bilder von 67P, die mithilfe des wissenschaftlichen Kamerasystems OSIRIS an Bord der ESA-Raumsonde Rosetta aufgenommen wurden, zeigen nun, dass Fontänen aus Staub auch an anderen Stellen der Oberfläche auftreten.


Ein Komet erwacht: Die beiden Ansichten zeigen dieselbe Region auf dem Hals von 67P/Churyumov-Gerasimenko. Das rechte Bild wurde mit einer Belichtungszeit von weniger als einer Sekunde aufgenommen. Die linke Aufnahme wurde überbelichtet (Belichtungszeit: 18,45 Sekunden), sodass Oberflächenstrukturen nicht voll zur Geltung kommen. Stattdessen zeigen sich Fontänen aus Staub, welche die Oberfläche verlassen. Die Bilder wurden mit der Weitwinkelkamera von OSIRIS, dem wissenschaftlichen Kamerasystem an Bord von Rosetta, am 20. Oktober aus einer Entfernung von 7,2 Kilometern aufgenommen.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA


Aktiver Kern: Dieses Bild der OSIRIS-Kamera vom 10. September zeigt Staubfontänen an mehreren Stellen der Kometenoberfläche.

© ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/SSO/NTA/UPM/DASP/IDA

„Wir glauben, dass zum jetzigen Zeitpunkt ein großer Teil der beleuchteten Oberfläche des Kometen einen gewissen Grad von Aktivität zeigt“, sagt OSIRIS-Wissenschaftler Jean-Baptiste Vincent vom Max-Planck-Institut für Sonnensystemforschung in Göttingen. In den vergangenen Wochen konnte seine Gruppe eine langsame, aber qualitative Veränderung beobachten. „Bereits im Sommer zeigten erste Bilder ausgeprägte Staubfontänen, welche die Kometenoberfläche verließen“, so Max-Planck-Forscher Holger Sierks, Leiter des OSIRIS-Teams. „Diese Fontänen beschränkten sich jedoch auf die Halsregion. Mittlerweile treten sie aber auch am Körper und Kopf des Kometen auf.“

Derzeit trennen 67P noch mehr als 450 Millionen Kilometer von der Sonne. Basierend auf erdgebundenen Beobachtungen erwarten Wissenschaftler in der Regel, dass die Aktivität eines Kometen erst dann merklich zunimmt, wenn er sich der Sonne bis auf etwa 300 Millionen Kilometer angenähert hat. „Erstmals verfolgen wir die Staubemissionen ganz aus der Nähe“, so Sierks. Die Forscher hoffen, dass die OSIRIS-Aufnahmen helfen werden zu verstehen, wie sich Kometenaktivität entwickelt und welche physikalischen Prozesse dabei eine Rolle spielen.

Da der vergleichsweise helle Kometenkern die Staubfontänen unter normalen Bedingungen überstrahlen würde, mussten die aktuellen Aufnahmen deutlich überbelichtet werden. „Zudem kann uns ein einzelnes Bild nur sehr wenig verraten“, sagt Sierks. „Wir können daraus nicht schließen, an welcher Stelle an der Oberfläche eine Fontäne ihren Ursprung nimmt.“ Stattdessen vergleichen die Forscher Bilder derselben Region, die aus verschiedenen Blickwinkeln aufgenommen wurden. Auf diese Weise lässt sich dann die dreidimensionale Struktur der Fontänen rekonstruieren.

Während die gesamte Aktivität von 67P zunimmt, erscheint die ausgewählte Landestelle der Mission auf dem Kopf des Kometen noch recht ruhig zu sein. Allerdings gibt es Hinweise, dass dort in einer Entfernung von etwa einem Kilometer derzeit neue aktive Regionen erwachen. Dies würde es den Instrumenten der Landeeinheit Philae ermöglichen, die Aktivität des Kometen aus noch geringerer Entfernung zu untersuchen.

Rosetta ist eine Mission der Europäischen Weltraumagentur ESA mit Beiträgen der Mitgliedsstaaten und der amerikanischen Weltraumagentur NASA. Rosettas Landeeinheit Philae wurde von einem Konsortium unter Leitung des Deutschen Zentrums für Luft- und Raumfahrt (DLR), des Max-Planck-Instituts für Sonnensystemforschung (MPS) und der französischen und italienischen Weltraumagentur (CNES und ASI) zur Verfügung gestellt. Rosetta ist die erste Mission in der Geschichte, die einen Kometen anfliegt, ihn auf seinem Weg um die Sonne begleitet und eine Landeeinheit auf seiner Oberfläche absetzt.

Das wissenschaftliche Kamerasystem OSIRIS wurde von einem Konsortium unter Leitung des Max-Planck-Instituts für Sonnensystemforschung in Zusammenarbeit mit CISAS, Universität Padova (Italien), Laboratoire d'Astrophysique de Marseille (Frankreich), Instituto de Astrofísica de Andalucia, CSIC (Spanien), Scientific Support Office der ESA (Niederlande), Instituto Nacional de Técnica Aeroespacial (Spanien), Universidad Politéchnica de Madrid (Spanien), Department of Physics and Astronomy of Uppsala University (Schweden) und dem Institut für Datentechnik und Kommunikationsnetze der TU Braunschweig gebaut. OSIRIS wurde finanziell unterstützt von den Weltraumagenturen Deutschlands (DLR), Frankreichs (CNES), Italiens (ASI), Spaniens (MEC) und Schwedens (SNSB).

Ansprechpartner

Dr. Birgit Krummheuer

Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 551 384979-462
 

Dr. Holger Sierks

Max-Planck-Institut für Sonnensystemforschung, Göttingen
Telefon:+49 551 384979-242

Dr. Birgit Krummheuer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/8718016/67p_churyumov-gerasimenko_staub

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Neue Harmonien in der Optoelektronik
21.07.2017 | Georg-August-Universität Göttingen

nachricht Von photonischen Nanoantennen zu besseren Spielekonsolen
20.07.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten