Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Experiment will die Quantenphysik für das menschliche Auge sichtbar machen

03.05.2016

Die Voraussagen der Quantenphysik sind durch unzählige Experimente bestätigt. Doch kein Mensch hat bisher den quantenphysikalischen Effekt der Verschränkung von Auge direkt beobachtet. Dies soll nun ein Experiment ermöglichen, das ein theoretischer Physiker der Universität Basel mit weiteren Wissenschaftlern vorschlägt. Das Experiment könnte neuen Anwendungen der Quantenphysik den Weg bereiten.

Die Quantenphysik ist über 100 Jahre alt, doch sie ruft auch heute mitunter noch ungläubiges Staunen hervor. Das gilt beispielsweise für die Verschränkung, ein quantenphysikalisches Phänomen, das sich etwa zwischen Atomen oder Photonen (Lichtteilchen) beobachten lässt:


Ein Photon wird in einen halbtransparenten Spiegel gelenkt. Danach existiert es in zwei miteinander verschränkten Zuständen. Das Photon wird dann von einem Detektor bzw. von Auge wahrgenommen.

Illustration: Valentina Caprara Vivoli

Sind zwei dieser Teilchen verschränkt, lässt sich der physikalische Zustand der beiden Einzelteile nicht mehr unabhängig beschreiben, sondern nur noch das Gesamtsystem, das beide Teilchen gemeinsam bilden.

Trotz dieser Besonderheit sind verschränkte Photonen Teil der realen Welt, wie viele Experimente bewiesen haben. Allerdings hat noch kein Mensch verschränkte Photonen direkt beobachtet. Das liegt daran, dass sich mit den verfügbaren Technologien nur einzelne bzw. eine Handvoll verschränkter Photonen herstellen lassen. Ihre Zahl ist jedoch zu gering, als dass die Photonen vom menschlichen Auge als Licht wahrgenommen werden könnten.

Verschränkte Photonen hundertfach verstärken

Nicolas Sangouard, theoretischer Physiker an der Universität Basel, hat nun zusammen mit zwei Quantenphysikern aus Delft (Niederlande) und Innsbruck (Österreich) in der Fachzeitschrift «Optica» aufgezeigt, wie die direkte Beobachtung verschränkter Photonen gelingen könnte. Die Grundidee: In einem Experiment wird ein verschränktes Photon erzeugt und dann durch eine spezielle Technik vervielfältigt, ohne dabei die quantenphysikalische Verschränkung zu zerstören.

Auf dem Weg wären dann rund hundert verschränkte Photonen vorhanden. Genau diese Zahl ist nach heutigem Wissen nötig, um beim Menschen den Eindruck von Licht zu erzeugen. Während die Hundert Photonen auf die Netzhaut treffen, kommt es nochmals zu erheblichen Verlusten. Nur rund sieben von ihnen erreichen tatsächlich eines der 120 Millionen lichtempfindlichen Stäbchen der Netzhaut. Diese Photonen erzeugen dann jenen Nervenimpuls, der im Gehirn eine Wahrnehmung von Licht hervorruft.

Zwei verschränkte Zustände

In dem Experiment, das die drei Quantenphysiker vorschlagen, entsteht Verschränkung durch ein einzelnes Photon, das auf einen halbdurchlässigen Spiegel gelenkt wird. Was dann geschieht, erklärt Nicolas Sangouard: «Das einzelne Photon wird vom Spiegel nicht durchgelassen oder reflektiert, sondern – Quantenphysik ist seltsam – das Photon wird gleichzeitig durchgelassen und reflektiert. Hinter dem Spiegel existiert das Photon in einem ‹durchgelassenen› und einem ‹reflektierten› Zustand, wobei diese beiden Zustände miteinander verschränkt sind.»

Hinter dem Spiegel werden zum einen ein Photonen-Detektor, zum anderen ein menschlicher Beobachter platziert. Damit das Auge des Beobachters verschränkte Photonen wahrnehmen kann, werden diese, bevor sie das Auge erreichen, mit einer Art Vergrösserungsglas hundertfach verstärkt. Dies geschieht – technisch gesprochen – durch eine Verschiebung des Phasenraums mithilfe eines Lasers. Ob der menschliche Beobachter bzw. der Detektor tatsächlich verschränkte Photonen beobachten, erschliesst sich nicht unmittelbar, sondern durch Ermittlung von Wahrscheinlichkeiten. Dazu wird das Experiment sehr oft wiederholt, und die dabei gewonnenen Daten müssen statistisch ausgewertet werden.

Sehr lange Beobachtungszeit

Noch steht nicht fest, ob die Gruppe um Nicolas Sangouard oder andere Quantenphysiker das Experiment aufbauen werden. Die dafür erforderlichen Technologien – spezielle Photonen-Quellen und Speziallaser – sind heute grundsätzlich verfügbar. Die entscheidende Hürde ist denn auch nicht der technische Aufbau, sondern die praktische Durchführung des Experiments.

Das menschliche Auge ist bei der Zählung von schwachen Lichtimpulsen nämlich etwa eine Milliarde Mal langsamer als moderne Photonen-Detektoren. «Nach einer ersten Schätzung sind mehrere Hunderttausend Durchläufe nötig, bis wir genügend Daten haben, um zu wissen, ob wir tatsächlich verschränkte Photonen beobachtet haben. Das heisst, die Testperson in unserem Experiment müsste während mehreren Hundert Stunden im Sekundentakt feststellen, ob sie gerade einen Lichtimpuls wahrgenommen hat oder nicht.»

Gelingt trotz solcher Hürden am Ende das Experiment, wäre der Beweis erbracht, dass das menschliche Auge Quantenverschränkung direkt wahrnehmen kann und somit das leistet, wofür bisher komplizierte und teure Detektoren erforderlich sind. Die Wissenschaft arbeitet gegenwärtig daran, das Prinzip der Verschränkung für den Bau sicherer digitaler Kommunikationsverbindungen oder für Quantencomputer zu nutzen. Laut Nicolas Sangouard könnten solche Anwendungen vom neuen Experiment profitieren.

Das Forschungsprojekt wird im Rahmen des Nationalen Forschungsschwerpunkts Quantenwissenschaften und -technologie (QSIT) vom Schweizerischen Nationalfonds unterstützt, zudem von der US-amerikanischen John Templeton Foundation.

Originalbeitrag

Valentina Caprara Vivoli, Pavel Sekatski, and Nicolas Sangouard
What does it take to detect entanglement with the human eye?
Optica (2016), doi: 10.1364/optica.3.000473

Weitere Auskünfte

Prof. Dr. Nicolas Sangouard, Universität Basel, Departement Physik, Theoretische Quantenoptik, Tel. +41 61 267 39 15, E-Mail: nicolas.sangouard@unibas.ch

Weitere Informationen:

http://dx.doi.org/10.1364/optica.3.000473 - Abstract
http://qotg.physik.unibas.ch/ - Forschungsgruppe Prof. Nicolas Sangouard

Reto Caluori | Universität Basel

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt
22.05.2017 | Universität Basel

nachricht Neuer Ionisationsweg in molekularem Wasserstoff identifiziert
22.05.2017 | Max-Planck-Institut für Kernphysik

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

Zweidimensionale magnetische Strukturen gelten als vielversprechendes Material für neuartige Datenspeicher, da sich die magnetischen Eigenschaften einzelner Molekülen untersuchen und verändern lassen. Forscher haben nun erstmals einen hauchdünnen Ferrimagneten hergestellt, bei dem sich Moleküle mit verschiedenen magnetischen Zentren auf einer Goldfläche selbst zu einem Schachbrettmuster anordnen. Dies berichten Wissenschaftler des Swiss Nanoscience Institutes der Universität Basel und des Paul Scherrer Institutes in der Wissenschaftszeitschrift «Nature Communications».

Ferrimagneten besitzen zwei magnetische Zentren, deren Magnetismus verschieden stark ist und in entgegengesetzte Richtungen zeigt. Zweidimensionale, quasi...

Im Focus: Neuer Ionisationsweg in molekularem Wasserstoff identifiziert

„Wackelndes“ Molekül schüttelt Elektron ab

Wie reagiert molekularer Wasserstoff auf Beschuss mit intensiven ultrakurzen Laserpulsen? Forscher am Heidelberger MPI für Kernphysik haben neben bekannten...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: XENON1T: Das empfindlichste „Auge“ für Dunkle Materie

Gemeinsame Meldung des MPI für Kernphysik Heidelberg, der Albert-Ludwigs-Universität Freiburg, der Johannes Gutenberg-Universität Mainz und der Westfälischen Wilhelms-Universität Münster

„Das weltbeste Resultat zu Dunkler Materie – und wir stehen erst am Anfang!“ So freuen sich Wissenschaftler der XENON-Kollaboration über die ersten Ergebnisse...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

14. Dortmunder MST-Konferenz zeigt individualisierte Gesundheitslösungen mit Mikro- und Nanotechnik

22.05.2017 | Veranstaltungen

Branchentreff für IT-Entscheider - Rittal Praxistage IT in Stuttgart und München

22.05.2017 | Veranstaltungen

Flugzeugreifen – Ähnlich wie PKW-/LKW-Reifen oder ganz verschieden?

22.05.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Myrte schaltet „Anstandsdame“ in Krebszellen aus

22.05.2017 | Biowissenschaften Chemie

Hauchdünne magnetische Materialien für zukünftige Quantentechnologien entwickelt

22.05.2017 | Physik Astronomie

Wie sich das Wasser in der Umgebung von gelösten Molekülen verhält

22.05.2017 | Biowissenschaften Chemie