Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Elektronenkäfig aus Schallwellen

14.11.2017

Internationales Wissenschaftlerteam entwickelt neues Konzept, Elektronen mit Hilfe von Schallwellen einzufangen zu manipulieren.

Ausschlaggebend für die Eigenschaften moderner, technologisch relevanter Materialien ist das korrelierte Verhalten der Elektronen in ihrem Innern. Ein besseres Verständnis davon ist nur möglich, wenn es gelingt, diese Teilchen kontrolliert einzufangen, entweder einzeln und isoliert, oder als Vielteilchensystem in einer Festkörperumgebung.


In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.

(Grafik: Originalveröffentlichung)

Wegen ihrer – im Vergleich zu Atomen – extrem kleinen Masse sind die punktförmigen Teilchen aber sehr flink und wendig und lassen sich deshalb nur schwer an einem Ort festhalten. Nun hat ein internationales Wissenschaftlerteam um Prof. Ignacio Cirac (Max-Planck-Institut für Quantenoptik, Garching), und Prof. Mikhail Lukin (Harvard Universität, USA) eine neue Methode ausgearbeitet, eine Art „Käfig“ für Elektronen zu bauen (Physical Review X 7, 24. Oktober 2017).

Danach erzeugen Schallwellen auf piezoelektrischen Oberflächen elektrische Potentiale, mit deren Hilfe Elektronen verschoben oder auch eingefangen werden können. Mit stehenden Schallwellen lassen sich darüber hinaus Gitterstrukturen ähnlich denen von optischen Gittern für neutrale Atome erzeugen.

Zum einen liefert die Arbeit einen allgemeinen theoretischen Rahmen sowie Richtlinien für eine experimentelle Realisierung des Konzepts. Zum andern untersuchen die Wissenschaftler im Detail die Eignung bestimmter, aus Schichten aufgebauter Halbleiterstrukturen als experimentelle Plattform. Der vorgeschlagene Aufbau ist von fundamentalem Interesse für die kontrollierte Untersuchung von in Festkörpersystemen auftretenden Quasiteilchen.

Er stellt aber auch eine neue Möglichkeit für die Quantensimulation von Festkörper-Vielteilchensystemen dar mit der Aussicht, in bislang unbekannte Parameterbereiche vorzustoßen, dank der extrem kleinen Teilchenmassen, der systemeigenen Elektron-Phonon-Kühlung und den starken Wechselwirkungen zwischen den Teilchen.

Basiselement in diesem Konzept ist eine aus verschiedenen Schichten gebildete Festkörperstruktur: auf einem Substrat ist zunächst ein dünner, praktisch zweidimensionaler Film aus einem halbleitenden Material, z.B. Galliumarsenid, aufgetragen. Darauf befindet sich eine Schicht aus einem piezoelektrischen Material, auf dessen Oberfläche zwei „Interdigital Transducer“ (IDT) aufgeprägt sind.

Die aus jeweils zwei dünnen Filmelektroden bestehenden IDTs erzeugen entgegen gesetzt laufende Oberflächenwellen. Diese „surface acoustic waves“ (SAWs) rufen ein zeitabhängiges periodisches elektrisches Potential hervor, das wiederum auf die in dem dünnen Halbleiterfilm gefangenen Elektronen wirkt. Die Tiefe und der Gitterabstand des Potentials werden durch die an den IDTs angelegte Spannung gesteuert.

SAWs wurden bereits erfolgreich eingesetzt, um die Position einzelner Elektronen zu verändern, oder um Elektronen die wenigen Nanosekunden lang festzuhalten, während der sich die Schallwellen auf der Oberfläche ausbreiten. Der neue Ansatz schlägt jedoch ein „quasi-stationäres“ Fallenpotential vor. „Wenn die Frequenz der Schallwellen hoch genug ist, können die Elektronen der schnell oszillierenden Kraft nicht mehr folgen“, erklärt Johannes Knörzer, Doktorand in der Abteilung Theorie von Prof. Cirac am MPQ. „Die Potentiallandschaft kann dann als ein effektiv zeitunabhängiges Pseudogitter beschrieben werden, das die Elektronen in der Nähe eines lokalen Minimums festhält.“

Ein Schwerpunkt der Arbeit ist die detaillierte Beschreibung der Bedingungen, unter denen einzelne Teilchen in von Schallwellen erzeugten elektrischen Potentialen dynamisch eingefangen und gekühlt werden können. „Die Rechnungen implizieren z.B., dass sehr tiefe Temperaturen erforderlich sind. In gewisser Weise erinnert die theoretische Behandlung des Systems an die von Ionen-Fallen“, erläutert Johannes Knörzer. Der andere Schwerpunkt ist die Simulation von Quanten-Vielteilchensystemen durch ein System aus Elektronen in einem akustischen Gitter. „Die Dynamik von Elektronen in einem akustischen Gitter hat große Ähnlichkeit mit dem Verhalten von fermionischen ultrakalten Atomen in optischen Gittern; beides wird vom Fermi-Hubbard Modell erfasst“, fügt Knörzer hinzu.

Das Team analysiert die Machbarkeit des Konzepts für unterschiedliche Heterostrukturen, in denen sich hochfrequente Schallwellen schnell ausbreiten können. Die Überlegungen gelten nicht nur für Elektronen, sondern auch für sogenannte Quasiteilchen wie Exzitonen oder Löcher, die in modernen Materialien auftreten. „Wir haben den starken Wunsch, ein tieferes Verständnis von den Eigenschaften und Wechselwirkungen dieser Teilchen zu gewinnen. Das ist unsere Motivation, einen Kontrollmechanismus zu finden, der die Allgemeinheit und Flexibilität der optischen Gitter auf Festkörpersysteme überträgt“, resümiert Prof. Ignacio Cirac. „Unser höchstes Ziel ist es, das Verhalten korrelierter Elektronen in technologisch relevanten Materialien und Molekülen zu verstehen. Das würde den Weg ebnen, einen universellen Quantensimulator zu bauen.“ Olivia Meyer-Streng

Beschreibung der Grafik:
In einem piezoelektrischen Material (PE) erzeugen stehende Oberflächen-Schallwellen ein zeitabhängiges elektrisches Potential, das auf die in einer dünnen Schicht gefangenen Elektronen, d.h. ein zweidimensionales Elektronengas (DEG), wirkt. Je nach Geometrie des Aufbaus sind die resultierenden akustischen Gitter ein- oder zweidimensional. Bei hohen Schallwellenfrequenzen kann das effektive Potential als zeitunabhängiges Pseudogitter betrachtet werden. Die Bewegung eines Elektrons in einem Potentialminimum entspricht den Schwingungen eines harmonischen Oszillators, die überlagert werden durch hochfrequente „Mikroschwingungen“ sehr kleiner Amplitude.
(Grafik: Originalveröffentlichung)

Originalveröffentlichung:
Original publication:
M. J. A. Schuetz, J. Knörzer, G. Giedke, L. M. K. Vandersypen, M. D. Lukin, and J. Ignacio Cirac
Acoustic Traps and Lattices for Electrons in Semiconductors
Physical Review X 7, 041019 (2017), DOI: 10.1103/PhysRevX.7.041019

Kontakt:

Prof. Dr. J. Ignacio Cirac
Honorarprofessor TU München und
Direktor am Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 705
E-Mail: ignacio.cirac@mpq.mpg.de

Johannes Knörzer
Doktorand, Abteilung Theorie
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Str. 1
85748 Garching b. München
Telefon: +49 (0)89 / 32 905 - 315
E-Mail: johannes.knoerzer@mpq.mpg.de

Dr. Olivia Meyer-Streng
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Quantenoptik
Telefon: +49 (0)89 / 32 905 - 213
E-Mail: olivia.meyer-streng@.mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut für Quantenoptik
Weitere Informationen:
http://www.mpq.mpg.de/

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten
23.01.2018 | Universität Basel

nachricht Reisetauglicher Laser
22.01.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optisches Nanoskop ermöglicht Abbildung von Quantenpunkten

Physiker haben eine lichtmikroskopische Technik entwickelt, mit der sich Atome auf der Nanoskala abbilden lassen. Das neue Verfahren ermöglicht insbesondere, Quantenpunkte in einem Halbleiter-Chip bildlich darzustellen. Dies berichten die Wissenschaftler des Departements Physik und des Swiss Nanoscience Institute der Universität Basel zusammen mit Kollegen der Universität Bochum in «Nature Photonics».

Mikroskope machen Strukturen sichtbar, die dem menschlichen Auge sonst verborgen blieben. Einzelne Moleküle und Atome, die nur Bruchteile eines Nanometers...

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

23.01.2018 | Veranstaltungen

Gemeinsam innovativ werden

23.01.2018 | Veranstaltungen

Leichtbau zu Ende gedacht – Herausforderung Recycling

23.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lebensrettende Mikrobläschen

23.01.2018 | Biowissenschaften Chemie

3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten

23.01.2018 | Maschinenbau

CHP1-Mutation verursacht zerebelläre Ataxie

23.01.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics