Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Elektron auf Tauchgang

27.03.2015

Erkenntnisse, wie Elektronen in Wasser gelöst werden, erweitern die Einflussmöglichkeiten auf chemische Reaktionen

Chemie kann ziemlich unübersichtlich sein. Damit bei einer Reaktion der gewünschte Stoff entsteht, sich zwei Substanzen überhaupt aufeinander einlassen oder gerade nicht, müssen Chemiker zahlreiche Faktoren berücksichtigen. Forscher des Fritz-Haber-Instituts der Max-Planck-Gesellschaft in Berlin machen ihnen jetzt eine weitere Stellschraube zugänglich.


Am Lichtkatapult: Jan-Christoph Deinert justiert den blauen Laser, mit dem Forscher des Fritz-Haber-Instituts Elektronen aus einer Kupferplatte in eine dünne, amorphe Eisschicht schleudern. Die Eisschicht dient ihnen als Modell für flüssiges Wasser. Mit ihren Experimenten untersuchen die Forscher, wie das Elektron darin gelöst wird.

© Clemens Richter / Fritz-Haber-Institut


Fotofalle für Elektronen: Mit Blitzen roten Laserlichts beobachten Max-Planck-Forscher um Julia Stähler, wie ein Elektron in eine amorphe Eisschicht eindringt. Die Laserpulse schlagen den negativen Ladungsträger dabei gleichzeitig aus der Eisschicht, einem Modellsystem für flüssiges Wasser, heraus. Auf diese Weise messen die Wissenschaftler, wie stark das Elektron im Wasser gebunden ist, wenn es darin eintaucht.

© Michael Meyer / Fritz-Haber-Institut

Sie haben bestimmt, wie stark Elektronen gebunden sind, wenn sie von Wasser aufgenommen werden – und zwar ganz zu Anfang, sobald die negativen Ladungsträger von einem Material wie etwa einem möglichen Reaktionspartner ins Wasser abgegeben werden. Elektronen sind die eigentlichen Akteure in chemischen Reaktionen, weil sie dabei zwischen verschiedenen Atomen verschoben werden.

Ob das passiert, hängt von ihrer Bindungsenergie an die unterschiedlichen Komponenten ab. Und bei Reaktionen in wässrigen Lösungen ist die Bindungsenergie eines Elektrons am Anfang des Prozesses, bei dem dieses gelöst wird, ein entscheidender Faktor. Jetzt da er bekannt ist, können Chemiker ihn berücksichtigen, wenn sie Reaktionen planen oder verhindern möchten.

Ein Elektron, das losgelöst von einem Atom oder Molekül im Wasser schwimmt, verhält sich in etwa so wie ein Einsiedlerkrebs ohne Muschel: So wie der Krebs sich schnell eine neue Behausung sucht und dabei mit seinen Artgenossen nicht gerade zimperlich umgeht, will auch das Elektron möglichst schnell wieder bei einem Atom unterschlüpfen und drängt sich dabei in die chemischen Verbindungen, die es im Wasser gerade findet. Daher mischen solche nackten Elektronen bei zahlreichen chemischen Reaktionen mit, wenn Wasser vorhanden ist: in den chemischen Prozessen in biologischen Zellen etwa, oder bei der Entstehung des Ozonlochs und anderen Reaktionen in der Atmosphäre, die in winzigen Wassertröpfchen stattfinden.

Ehe ein Elektron im Wasser seine neue Bleibe in einem Atom oder Molekül einnimmt, strebt es jedoch erst einmal nach einem notdürftigen Ausgleich für seine negative Ladung, um seine elektronische Blöße zu bedecken. Zu diesem Zweck umgibt es sich mit Wassermolekülen, die positive elektrische Pole besitzen und diese zur negativen Ladung des Elektrons ausrichten. Ist das geschehen, ist das Elektron im Wasser gelöst. Nun hat ein Team um Julia Stähler, Leiterin einer Arbeitsgruppe am Fritz-Haber-Institut der Max-Planck-Gesellschaft, detaillierte Informationen über den Lösevorgang gewonnen.

Chemiker brauchen die Bindungsenergie des eintauchenden Elektrons

Die Forscher haben zum einen ermittelt, mit welcher Energie das nackte Elektron gebunden ist, unmittelbar nachdem es ins Wasser eintaucht und seine Ladung noch nicht mit den positiven Polen von Wassermolekülen abgepuffert ist. Demnach ist ein solches Elektron deutlich schwächer gebunden als selbst die äußeren Elektronen der Alkalimetalle wie Natrium oder Kalium, die wegen der niedrigen Bindungsenergie ihrer Elektronen auch schon extrem reaktiv sind. Zum anderen haben die Forscher festgestellt, dass es nur 22 Femtosekunden dauert, bis das Elektron beginnt, Wassermoleküle um sich zu versammeln – eine Femtosekunde ist der Millionste Bruchteil einer Milliardstel Sekunde.

Das enorme Tempo des Prozesses erklärt, warum Wissenschaftler die Bindungsenergie des Elektrons direkt nach seinem Eintauchen ins Wasser bislang nicht messen konnten. „Diese Information ist für Chemiker jedoch wichtig, wenn sie Reaktionen mit gelösten Elektronen fördern oder verhindern wollen“, erklärt Julia Stähler. Denn genau diese Energie entscheidet, ob der erste Schritt einer Reaktion mit gelösten Elektronen stattfindet oder nicht: Wenn eine Substanz ein Elektron ans Wasser abgibt, muss es die Bindungsenergie eines Elektrons mitbringen, das gerade im Wasser eintaucht.

Das Team der Physikerin hat die Erkenntnisse über den Tauchgang des Elektrons mithilfe der sogenannten zeitaufgelösten Zwei-Photonen-Photoelektronenspektroskopie (2PPE) gewonnen. Bei der Photoelektronenspektroskopie katapultiert Licht Elektronen aus ihrer atomaren Umgebung heraus. Aus der Energie des Lichts und der Bewegungsenergie des davon fliegenden Elektrons, lässt sich seine Bindungsenergie bestimmen. Zwei Photonen erlauben es dabei, die Bindungsenergie in Zuständen zu messen, die Elektronen gewöhnlich nicht und wenn, dann nur mit einem Energieschubs, einnehmen. In einem solchen Zustand befindet sich ein Elektron, unmittelbar nachdem es ins Wasser eintaucht.

Ein Modell aus Eis mit der Struktur von flüssigem Wasser

Um die Bindungsenergie der tauchenden Elektronen zu ermitteln, verwendet das Team um Julia Stähler ein Modell von Wasser: Eine dünne Schicht Eis, in der die Wassermoleküle aber nicht wie in gewöhnlichem Eis, sondern ähnlich wie in flüssigem Wasser angeordnet sind, nämlich amorph. Diese dünne Eisschicht erzeugen sie auf einem Kupferplättchen. Aus dem Kupferplättchen schlagen die Forscher mit einem ersten sehr kurzen Laserblitz nun zunächst ein Elektron heraus, das daraufhin in die amorphe Eisschicht eindringt. Dann jagen sie auf ihre Probe einen zweiten Laserpuls, der das Elektron auch aus der Eisschicht schleudert. Den zeitlichen Abstand zwischen den beiden Laserblitzen stellen sie gezielt, mit der Genauigkeit von Femtosekunden ein. Dank dieser Zeitauflösung können sie verfolgen, wie lange das Elektron in dem Zustand verweilt, in dem es noch nicht von den Wassermolekülen gelöst ist.

Auf diese Weise fand das Team zudem heraus, dass ein Elektron auch direkt – also sogar ohne den Zeitverzug von 22 Femtosekunden – im gelösten Zustand landen kann, in dem die Wassermoleküle seine Ladung ausgleichen. „Damit beantworten wir die Frage, ob sich ein Elektron im Wasser sein eigenes Potenzialloch gräbt oder in ein zumindest kleines Loch fällt, das bereits existiert.“, sagt Julia Stähler. Ein Potenzialloch entsteht, wenn die Dipole der Wassermoleküle so ausgerichtet sind, dass ihre positiven Pole das negativ geladene Elektron einhüllen. „Wenn das Elektron direkt in einem solchen Potenzialloch landen kann, muss es das natürlich schon vorher geben“, sagt die Physikerin. Würde das Elektron sein Potenzialloch erst erzeugen, drehten die Wasserdipole ihre positiven Pole erst zu ihm hin, sobald sie es wahrnehmen. Und das würde zumindest eine kleine Weile dauern. Allerdings vertieft ein Elektron das bereits vorhandene Loch, in dem es Platz gefunden hat, noch.

Julia Stähler ist überzeugt, dass sich die Erkenntnisse aus der Studie an dem Modellsystem weitgehend auf flüssiges Wasser übertragen lassen. „Der absolute Wert der Bindungsenergie kann natürlich abweichen“, sagt Julia Stähler. „Der Löseprozess dürfte in Wasser aber genauso schnell und auf dieselbe Weise stattfinden wie in unserem Modellsystem.“ Daher erforschen die Berliner Max-Planck-Forscher am amorphen Eis weiter, wie Elektronen im Wasser eintauchen. So bestimmen sie nun etwa, wie weit das Elektron ins Wasser eindringt, ehe es von den Wassermolekülen beeinflusst. Denn auch diese Erkenntnis gäbe Chemikern Anhaltspunkte, wie sie Reaktionen in Wasser beeinflussen können.


Ansprechpartner

Dr. Julia Stähler
Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Telefon: +49 30 8413-5125

Fax: +49 30 8413-5375

E-Mail: staehler@fhi-berlin.mpg.de


Originalpublikation
Julia Stähler, Jan-Christoph Deinert, Daniel Wegkamp , Sebastian Hagen und Martin Wolf

Real-Time Measurement of the Vertical Binding Energy during the Birth of a Solvated Electron

Journal of the American Chemical Society, online veröffentlicht 22. Januar 2015; doi: 10.1021/ja511571y

Dr. Julia Stähler | Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin
Weitere Informationen:
http://www.mpg.de/9086169/elektron-geloest-bindungsenergie

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Moleküle brillant beleuchtet
23.04.2018 | Max-Planck-Institut für Quantenoptik

nachricht Wie zerfallen kleinste Bleiteilchen?
23.04.2018 | Ernst-Moritz-Arndt-Universität Greifswald

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Metalle verbinden ohne Schweißen

Kieler Prototyp für neue Verbindungstechnik wird auf Hannover Messe präsentiert

Schweißen ist noch immer die Standardtechnik, um Metalle miteinander zu verbinden. Doch das aufwändige Verfahren unter hohen Temperaturen ist nicht überall...

Im Focus: Software mit Grips

Ein computergestütztes Netzwerk zeigt, wie die Ionenkanäle in der Membran von Nervenzellen so verschiedenartige Fähigkeiten wie Kurzzeitgedächtnis und Hirnwellen steuern können

Nervenzellen, die auch dann aktiv sind, wenn der auslösende Reiz verstummt ist, sind die Grundlage für ein Kurzzeitgedächtnis. Durch rhythmisch aktive...

Im Focus: Der komplette Zellatlas und Stammbaum eines unsterblichen Plattwurms

Von einer einzigen Stammzelle zur Vielzahl hochdifferenzierter Körperzellen: Den vollständigen Stammbaum eines ausgewachsenen Organismus haben Wissenschaftlerinnen und Wissenschaftler aus Berlin und München in „Science“ publiziert. Entscheidend war der kombinierte Einsatz von RNA- und computerbasierten Technologien.

Wie werden aus einheitlichen Stammzellen komplexe Körperzellen mit sehr unterschiedlichen Funktionen? Die Differenzierung von Stammzellen in verschiedenste...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

Internationale Konferenz zur Digitalisierung

19.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Moleküle brillant beleuchtet

23.04.2018 | Physik Astronomie

Sauber und effizient - Fraunhofer ISE präsentiert Wasserstofftechnologien auf Hannover Messe

23.04.2018 | HANNOVER MESSE

Fraunhofer IMWS entwickelt biobasierte Faser-Kunststoff-Verbunde für Leichtbau-Anwendungen

23.04.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics