Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein außergewöhnlich kraftvolles Trio in der Großen Magellanschen Wolke

23.01.2015

Einmal mehr hat das Gammastrahlen-Observatorium H.E.S.S. sein Entdeckerpotenzial unter Beweis gestellt. In der Großen Magellanschen Wolke entdeckte es extrem leuchtstarke Höchstenergie-Gammastrahlenquellen: es handelt sich um drei verschiedenartige Objekte, nämlich den stärksten Pulsarwindnebel, den stärksten Supernova-Überrest und eine 270 Lichtjahre große Schale, aufgeblasen von mehreren Supernovae und Sternen – eine sogenannte Superschale. Damit gelang es zum ersten Mal, in einer fremden Galaxie gleich mehrere sternähnliche Gammastrahlenquellen bei höchsten Energien zu beobachten. Zugleich ist die Superschale der erste Vertreter einer neuen Klasse von Höchstenergie-Gammastrahlenquellen.

Kosmische Beschleuniger, vor allem Supernova-Überreste und Pulsarwindnebel, also Endprodukte massereicher Sterne, machen sich durch höchstenergetische Gammastrahlen bemerkbar. Dort werden geladene Teilchen auf extreme Geschwindigkeiten beschleunigt.


Optisches Bild der Milchstraße und ein Kompositbild (optisch, Hα) der Großen Magellanschen Wolke mit darübergelegten H.E.S.S.-Himmelskarten.

Milchstraße: H.E.S.S.-Kollaboration, opt: SkyView, Mellinger; LMC: H.E.S.S.-Kollaboration, http://dirty.as.arizona.edu/~kgordon/research/mc/mc.html, Hα: Kennicutt et al. (2001), opt: (B-Band): Bothun

Wenn sie auf das umgebende Medium – entweder interstellares Gas oder Licht – treffen, entsteht Gammastrahlung. Höchstenergetische Gammastrahlen aus dem Kosmos können am Erdboden gemessen werden. Beim Eintritt in die Atmosphäre verursachen sie Kaskaden geladener Sekundärteilchen, sogenannte Teilchenschauer. Diese emittieren extrem kurze bläuliche Lichtblitze (Tscherenkow-Licht), die mit großen Spiegelteleskopen und schnellen Lichtsensoren beobachtbar sind.

Die Große Magellansche Wolke (LMC) ist eine Zwerg-Satellitengalaxie unserer Milchstraße in einer Entfernung von ungefähr 170.000 Lichtjahren, die wir als Scheibe sehen. In ihr entstehen ständig neue massereiche Sterne, und sie beherbergt zahlreiche massereiche Sternhaufen. Die Rate, mit der neue massive Sterne gebildet werden und am Ende ihres Lebens als Supernovae explodieren, ist in der LMC im Verhältnis zu ihrer Sternmasse ist fünf Mal höher als in der Milchstraße.

Der jüngste Supernova-Überrest in unserer lokalen Galaxiengruppe, SN 1987A, befindet sich ebenfalls in der LMC. Nicht zuletzt deshalb beobachten die Wissenschaftler der H.E.S.S.-Kollaboration dieses kosmische Objekt ausgiebig, auf der Suche nach höchstenergetischer Gammastrahlung, über die man den Aufbau der Teilchenbeschleunigung in der jungen Sternexplosion zu verstehen hofft.

Insgesamt 210 Stunden haben die Astrophysiker die H.E.S.S.-Teleskope auf die größte Sternbildungsregion in der LMC, bekannt als Tarantelnebel, gerichtet. Dabei gelang es ihnen zum ersten Mal, mehrere Quellen höchstenergetischer Gammastrahlung in einer Galaxie außerhalb der Milchstraße aufgelöst abzubilden: drei verschiedenartige, extrem energiereiche Objekte.

Bei der sogenannten Superschale 30 Dor C handelt es sich um die größte bekannte Röntgenstrahlung emittierende Schale, die wohl durch mehrere Supernova-Explosionen und starke Sternenwinde entstanden ist. Superschalen werden als Produzenten galaktischer kosmischer Strahlung diskutiert – zusätzlich oder alternativ zu einzelnen Supernova-Überresten. Die Ergebnisse von H.E.S.S. zeigen, dass diese Superschale eine Quelle hochenergetischer Teilchen ist, mit denen sie gefüllt ist. 30 Dor C ist der erste Vertreter einer neuen Klasse von Höchstenergie-Gammastrahlenquellen.

Pulsare sind hoch magnetisierte, schnell rotierende Neutronensterne, die einen Wind ultrarelativistischer Teilchen emittieren und so einen Nebel bilden. Das bekannteste Exemplar ist der Krebsnebel, eine der hellsten Quellen am Hochenergie-Gammahimmel. Der Pulsar PSR J0537−6910 mit seinem Nebel N 157B, den die H.E.S.S.-Teleskope in der LMC entdeckt haben, ist in vielerlei Hinsicht ein Zwilling des sehr starken Krebspulsars in unserer eigenen Galaxis. Allerdings leuchtet sein Pulsarwindnebel N 157B im höchstenergetischen Gammalicht um eine Größenordnung heller als der Krebsnebel. Verantwortlich dafür ist das schwächere Magnetfeld in N 157B und das intensive Sternenlicht aus benachbarten Sternbildungsgebieten, die beide die Erzeugung hochenergetischer Gammastrahlung fördern.

Der Supernova-Überrest N 132D, als ein helles Objekt im Radiowellen- und Infrarotbereich bekannt, scheint einer der ältesten – und stärksten – Supernova-Überreste zu sein, der noch im höchstenergetischen Gammalicht leuchtet. Er ist zwischen 2500 und 6000 Jahre alt und immer noch heller als die stärksten Supernova-Überreste in der Milchstraße, obwohl Modelle vorhersagen, dass in diesem Alter die Supernova-Explosionsfront schon so langsam sein sollte, dass sie kein effizienter Teilchenbeschleuniger mehr ist. Die Ergebnisse bestätigen die Vermutung aus anderen Beobachtungen mit H.E.S.S., dass Supernova-Überreste wesentlich leuchtstärker sein können als bisher angenommen.

Sich teilweise überlappend und an der Nachweisgrenze des Instruments waren diese neuen Quellen eine Herausforderung für die H.E.S.S.-Wissenschaftler. Die Entdeckungen gelangen ihnen nur mit neu entwickelten Methoden zur Interpretation der von den Teleskopen aufgenommenen Tscherenkow-Bilder. So konnten sie insbesondere die Genauigkeit bei der Bestimmung der Richtung, aus der die Gammastrahlen kommen, verbessern.

„Sowohl der Pulsarwindnebel als auch der Supernova-Überrest, die H.E.S.S. in der Großen Magellanschen Wolke entdeckt hat, sind energiereicher als ihre stärksten Verwandten in der Milchstraße. Offensichtlich sorgt die hohe Sternbildungsrate in der LMC dafür, dass dort äußerst extreme Objekte entstehen”, fasst Chia Chun Lu zusammen, die in ihrer Dissertation die LMC-Daten ausgewertet hat. „Überraschenderweise zeigte sich der junge Supernova-Überrest SN 1987A jedoch nicht, trotz entsprechender theoretischer Vorhersagen. Aber wir werden weiter danach suchen”, ergänzt ihr Doktorvater Werner Hofmann, Direktor am MPI für Kernphysik in Heidelberg und langjähriger Sprecher der H.E.S.S.-Kollaboration.

Das neue 28-m-H.E.S.S. II-Teleskop steigert die Leistungsfähigkeit des H.E.S.S.-Teleskopsystems, und in Zukunft wird das geplante Cherenkov Telescope Array (CTA) noch empfindlichere und höher aufgelöste Gammalicht-Bilder der LMC liefern – in den Wissenschafts-Planungen für CTA ist unsere Satellitengalaxie bereits als ein wichtiges Projekt enthalten.

Das High Energy Stereoscopic System

In der H.E.S.S.-Kollaboration arbeiten Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Namibia, Südafrika, Irland, Armenien, Polen, Australien, Österreich, den Niederlanden und Schweden zusammen, die von ihren jeweiligen Ländern und Institutionen unterstützt werden.

Die H.E.S.S.-Teleskope stehen in Namibia, im Südwesten Afrikas. Das System aus vier 13-m-Teleskopen, das kürzlich mit dem riesigen 28-m-H.E.S.S. II-Teleskop ergänzt wurde, ist einer der empfindlichsten Detektoren für höchstenergetische Gammastrahlen. Bei deren Eintritt in die Erdatmosphäre entstehen kurzlebige Teilchenschauer. Die H.E.S.S.-Teleskope registrieren die schwachen bläulichen Blitze, die die Teilchenschauer aussenden (genannt Tscherenkow-Licht, einige Nanosekunden kurz), indem sie das Licht mit ihren großen Spiegeln sammeln und es auf die extrem empfindlichen Kameras reflektieren. Jedes Bild zeigt die Himmelsposition eines einzelnen Gammaphotons, und die gesammelte Lichtmenge entspricht seiner Energie. Photon für Photon kann H.E.S.S. so Karten der astronomischen Objekte im Gammalicht erstellen.

Die H.E.S.S.-Teleskope sind seit Ende 2002 in Betrieb; zum 10-jährigen Jubiläum im September 2012 hatten die Teleskope in 9415 Beobachtungsstunden 6361 Millionen Luftschauer gemessen. H.E.S.S. hat die Mehrheit der etwa 150 bekannten kosmischen Objekte, die höchstenergetische Gammastrahlen emittieren, entdeckt. 2006 erhielt das H.E.S.S.-Team den Descartes-Preis der Europäischen Kommission und 2010 den Rossi-Preis der American Astronomical Society. 2009 reihte eine Studie H.E.S.S. in die Liste der 10 wichtigsten Observatorien weltweit ein.

Originalpublikation:

The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud, H.E.S.S. Collaboration (corresponding authors: j.vink@uva.nl, nukri.komin@wits.ac.za, chia-chun.lu@mpi-hd.mpg.de, michael.mayer@physik.hu-berlin.de, stefan.ohm@desy.de), Science 347, DOI: 10.1126/science.1261313 (23.01.2015)

Kontakt:

Prof. Dr. Werner Hofmann
MPI für Kernphysik, Heidelberg
E-Mail: werner.hofmann@mpi-hd.mpg.de
Tel: +496221 516330

Prof. Dr. Christian Stegmann (Sprecher der H.E.S.S.-Kollaboration)
DESY Zeuthen
E-Mail: christian.stegmann@desy.de
Tel: +4933762 77416

Weitere Informationen:

http://www.mpi-hd.mpg.de/HESS - H.E.S.S.-Homepage
http://www.mpi-hd.mpg.de/HESS/pages/about/ - H.E.S.S-Instrumen

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Planeten außerhalb unseres Sonnensystems: Bayreuther Forscher dringen tief ins Weltall vor
23.02.2017 | Universität Bayreuth

nachricht Kühler Zwerg und die sieben Planeten
23.02.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: „Vernetzte Autonome Systeme“ von acatech und DFKI auf der CeBIT

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für Künstliche Intelligenz (DFKI) in Kooperation mit der Deutschen Messe AG vernetzte Autonome Systeme. In Halle 12 am Stand B 63 erwarten die Besucherinnen und Besucher unter anderem Roboter, die Hand in Hand mit Menschen zusammenarbeiten oder die selbstständig gefährliche Umgebungen erkunden.

Auf der IT-Messe CeBIT vom 20. bis 24. März präsentieren acatech – Deutsche Akademie der Technikwissenschaften und das Deutsche Forschungszentrum für...

Im Focus: Kühler Zwerg und die sieben Planeten

Erdgroße Planeten mit gemäßigtem Klima in System mit ungewöhnlich vielen Planeten entdeckt

In einer Entfernung von nur 40 Lichtjahren haben Astronomen ein System aus sieben erdgroßen Planeten entdeckt. Alle Planeten wurden unter Verwendung von boden-...

Im Focus: Mehr Sicherheit für Flugzeuge

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem totalen Triebwerksausfall zum Einsatz kommt, um den Piloten ein sicheres Gleiten zu einem Notlandeplatz zu ermöglichen, und ein Assistenzsystem für Segelflieger, das ihnen das Erreichen größerer Höhen erleichtert. Präsentiert werden sie von Prof. Dr.-Ing. Wolfram Schiffmann auf der Internationalen Fachmesse für Allgemeine Luftfahrt AERO vom 5. bis 8. April in Friedrichshafen.

Zwei Entwicklungen am Lehrgebiet Rechnerarchitektur der FernUniversität in Hagen können das Fliegen sicherer machen: ein Flugassistenzsystem, das bei einem...

Im Focus: HIGH-TOOL unterstützt Verkehrsplanung in Europa

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt sich bewerten, wie verkehrspolitische Maßnahmen langfristig auf Wirtschaft, Gesellschaft und Umwelt wirken. HIGH-TOOL ist ein frei zugängliches Modell mit Modulen für Demografie, Wirtschaft und Ressourcen, Fahrzeugbestand, Nachfrage im Personen- und Güterverkehr sowie Umwelt und Sicherheit. An dem nun erfolgreich abgeschlossenen EU-Projekt unter der Koordination des KIT waren acht Partner aus fünf Ländern beteiligt.

Forschung am Karlsruher Institut für Technologie (KIT) unterstützt die Europäische Kommission bei der Verkehrsplanung: Anhand des neuen Modells HIGH-TOOL lässt...

Im Focus: Zinn in der Photodiode: nächster Schritt zur optischen On-Chip-Datenübertragung

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium allein – die stoffliche Basis der Chip-Produktion – sind als Lichtquelle kaum geeignet. Jülicher Physiker haben nun gemeinsam mit internationalen Partnern eine Diode vorgestellt, die neben Silizium und Germanium zusätzlich Zinn enthält, um die optischen Eigenschaften zu verbessern. Das Besondere daran: Da alle Elemente der vierten Hauptgruppe angehören, sind sie mit der bestehenden Silizium-Technologie voll kompatibel.

Schon lange suchen Wissenschaftler nach einer geeigneten Lösung, um optische Komponenten auf einem Computerchip zu integrieren. Doch Silizium und Germanium...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Aufbruch: Forschungsmethoden in einer personalisierten Medizin

24.02.2017 | Veranstaltungen

Österreich erzeugt erstmals Erdgas aus Sonnen- und Windenergie

24.02.2017 | Veranstaltungen

Big Data Centrum Ostbayern-Südböhmen startet Veranstaltungsreihe

23.02.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Fraunhofer HHI auf dem Mobile World Congress mit VR- und 5G-Technologien

24.02.2017 | Messenachrichten

MWC 2017: 5G-Hauptstadt Berlin

24.02.2017 | Messenachrichten

Auf der molekularen Streckbank

24.02.2017 | Biowissenschaften Chemie