Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein außergewöhnlich kraftvolles Trio in der Großen Magellanschen Wolke

23.01.2015

Einmal mehr hat das Gammastrahlen-Observatorium H.E.S.S. sein Entdeckerpotenzial unter Beweis gestellt. In der Großen Magellanschen Wolke entdeckte es extrem leuchtstarke Höchstenergie-Gammastrahlenquellen: es handelt sich um drei verschiedenartige Objekte, nämlich den stärksten Pulsarwindnebel, den stärksten Supernova-Überrest und eine 270 Lichtjahre große Schale, aufgeblasen von mehreren Supernovae und Sternen – eine sogenannte Superschale. Damit gelang es zum ersten Mal, in einer fremden Galaxie gleich mehrere sternähnliche Gammastrahlenquellen bei höchsten Energien zu beobachten. Zugleich ist die Superschale der erste Vertreter einer neuen Klasse von Höchstenergie-Gammastrahlenquellen.

Kosmische Beschleuniger, vor allem Supernova-Überreste und Pulsarwindnebel, also Endprodukte massereicher Sterne, machen sich durch höchstenergetische Gammastrahlen bemerkbar. Dort werden geladene Teilchen auf extreme Geschwindigkeiten beschleunigt.


Optisches Bild der Milchstraße und ein Kompositbild (optisch, Hα) der Großen Magellanschen Wolke mit darübergelegten H.E.S.S.-Himmelskarten.

Milchstraße: H.E.S.S.-Kollaboration, opt: SkyView, Mellinger; LMC: H.E.S.S.-Kollaboration, http://dirty.as.arizona.edu/~kgordon/research/mc/mc.html, Hα: Kennicutt et al. (2001), opt: (B-Band): Bothun

Wenn sie auf das umgebende Medium – entweder interstellares Gas oder Licht – treffen, entsteht Gammastrahlung. Höchstenergetische Gammastrahlen aus dem Kosmos können am Erdboden gemessen werden. Beim Eintritt in die Atmosphäre verursachen sie Kaskaden geladener Sekundärteilchen, sogenannte Teilchenschauer. Diese emittieren extrem kurze bläuliche Lichtblitze (Tscherenkow-Licht), die mit großen Spiegelteleskopen und schnellen Lichtsensoren beobachtbar sind.

Die Große Magellansche Wolke (LMC) ist eine Zwerg-Satellitengalaxie unserer Milchstraße in einer Entfernung von ungefähr 170.000 Lichtjahren, die wir als Scheibe sehen. In ihr entstehen ständig neue massereiche Sterne, und sie beherbergt zahlreiche massereiche Sternhaufen. Die Rate, mit der neue massive Sterne gebildet werden und am Ende ihres Lebens als Supernovae explodieren, ist in der LMC im Verhältnis zu ihrer Sternmasse ist fünf Mal höher als in der Milchstraße.

Der jüngste Supernova-Überrest in unserer lokalen Galaxiengruppe, SN 1987A, befindet sich ebenfalls in der LMC. Nicht zuletzt deshalb beobachten die Wissenschaftler der H.E.S.S.-Kollaboration dieses kosmische Objekt ausgiebig, auf der Suche nach höchstenergetischer Gammastrahlung, über die man den Aufbau der Teilchenbeschleunigung in der jungen Sternexplosion zu verstehen hofft.

Insgesamt 210 Stunden haben die Astrophysiker die H.E.S.S.-Teleskope auf die größte Sternbildungsregion in der LMC, bekannt als Tarantelnebel, gerichtet. Dabei gelang es ihnen zum ersten Mal, mehrere Quellen höchstenergetischer Gammastrahlung in einer Galaxie außerhalb der Milchstraße aufgelöst abzubilden: drei verschiedenartige, extrem energiereiche Objekte.

Bei der sogenannten Superschale 30 Dor C handelt es sich um die größte bekannte Röntgenstrahlung emittierende Schale, die wohl durch mehrere Supernova-Explosionen und starke Sternenwinde entstanden ist. Superschalen werden als Produzenten galaktischer kosmischer Strahlung diskutiert – zusätzlich oder alternativ zu einzelnen Supernova-Überresten. Die Ergebnisse von H.E.S.S. zeigen, dass diese Superschale eine Quelle hochenergetischer Teilchen ist, mit denen sie gefüllt ist. 30 Dor C ist der erste Vertreter einer neuen Klasse von Höchstenergie-Gammastrahlenquellen.

Pulsare sind hoch magnetisierte, schnell rotierende Neutronensterne, die einen Wind ultrarelativistischer Teilchen emittieren und so einen Nebel bilden. Das bekannteste Exemplar ist der Krebsnebel, eine der hellsten Quellen am Hochenergie-Gammahimmel. Der Pulsar PSR J0537−6910 mit seinem Nebel N 157B, den die H.E.S.S.-Teleskope in der LMC entdeckt haben, ist in vielerlei Hinsicht ein Zwilling des sehr starken Krebspulsars in unserer eigenen Galaxis. Allerdings leuchtet sein Pulsarwindnebel N 157B im höchstenergetischen Gammalicht um eine Größenordnung heller als der Krebsnebel. Verantwortlich dafür ist das schwächere Magnetfeld in N 157B und das intensive Sternenlicht aus benachbarten Sternbildungsgebieten, die beide die Erzeugung hochenergetischer Gammastrahlung fördern.

Der Supernova-Überrest N 132D, als ein helles Objekt im Radiowellen- und Infrarotbereich bekannt, scheint einer der ältesten – und stärksten – Supernova-Überreste zu sein, der noch im höchstenergetischen Gammalicht leuchtet. Er ist zwischen 2500 und 6000 Jahre alt und immer noch heller als die stärksten Supernova-Überreste in der Milchstraße, obwohl Modelle vorhersagen, dass in diesem Alter die Supernova-Explosionsfront schon so langsam sein sollte, dass sie kein effizienter Teilchenbeschleuniger mehr ist. Die Ergebnisse bestätigen die Vermutung aus anderen Beobachtungen mit H.E.S.S., dass Supernova-Überreste wesentlich leuchtstärker sein können als bisher angenommen.

Sich teilweise überlappend und an der Nachweisgrenze des Instruments waren diese neuen Quellen eine Herausforderung für die H.E.S.S.-Wissenschaftler. Die Entdeckungen gelangen ihnen nur mit neu entwickelten Methoden zur Interpretation der von den Teleskopen aufgenommenen Tscherenkow-Bilder. So konnten sie insbesondere die Genauigkeit bei der Bestimmung der Richtung, aus der die Gammastrahlen kommen, verbessern.

„Sowohl der Pulsarwindnebel als auch der Supernova-Überrest, die H.E.S.S. in der Großen Magellanschen Wolke entdeckt hat, sind energiereicher als ihre stärksten Verwandten in der Milchstraße. Offensichtlich sorgt die hohe Sternbildungsrate in der LMC dafür, dass dort äußerst extreme Objekte entstehen”, fasst Chia Chun Lu zusammen, die in ihrer Dissertation die LMC-Daten ausgewertet hat. „Überraschenderweise zeigte sich der junge Supernova-Überrest SN 1987A jedoch nicht, trotz entsprechender theoretischer Vorhersagen. Aber wir werden weiter danach suchen”, ergänzt ihr Doktorvater Werner Hofmann, Direktor am MPI für Kernphysik in Heidelberg und langjähriger Sprecher der H.E.S.S.-Kollaboration.

Das neue 28-m-H.E.S.S. II-Teleskop steigert die Leistungsfähigkeit des H.E.S.S.-Teleskopsystems, und in Zukunft wird das geplante Cherenkov Telescope Array (CTA) noch empfindlichere und höher aufgelöste Gammalicht-Bilder der LMC liefern – in den Wissenschafts-Planungen für CTA ist unsere Satellitengalaxie bereits als ein wichtiges Projekt enthalten.

Das High Energy Stereoscopic System

In der H.E.S.S.-Kollaboration arbeiten Wissenschaftler aus Deutschland, Frankreich, Großbritannien, Namibia, Südafrika, Irland, Armenien, Polen, Australien, Österreich, den Niederlanden und Schweden zusammen, die von ihren jeweiligen Ländern und Institutionen unterstützt werden.

Die H.E.S.S.-Teleskope stehen in Namibia, im Südwesten Afrikas. Das System aus vier 13-m-Teleskopen, das kürzlich mit dem riesigen 28-m-H.E.S.S. II-Teleskop ergänzt wurde, ist einer der empfindlichsten Detektoren für höchstenergetische Gammastrahlen. Bei deren Eintritt in die Erdatmosphäre entstehen kurzlebige Teilchenschauer. Die H.E.S.S.-Teleskope registrieren die schwachen bläulichen Blitze, die die Teilchenschauer aussenden (genannt Tscherenkow-Licht, einige Nanosekunden kurz), indem sie das Licht mit ihren großen Spiegeln sammeln und es auf die extrem empfindlichen Kameras reflektieren. Jedes Bild zeigt die Himmelsposition eines einzelnen Gammaphotons, und die gesammelte Lichtmenge entspricht seiner Energie. Photon für Photon kann H.E.S.S. so Karten der astronomischen Objekte im Gammalicht erstellen.

Die H.E.S.S.-Teleskope sind seit Ende 2002 in Betrieb; zum 10-jährigen Jubiläum im September 2012 hatten die Teleskope in 9415 Beobachtungsstunden 6361 Millionen Luftschauer gemessen. H.E.S.S. hat die Mehrheit der etwa 150 bekannten kosmischen Objekte, die höchstenergetische Gammastrahlen emittieren, entdeckt. 2006 erhielt das H.E.S.S.-Team den Descartes-Preis der Europäischen Kommission und 2010 den Rossi-Preis der American Astronomical Society. 2009 reihte eine Studie H.E.S.S. in die Liste der 10 wichtigsten Observatorien weltweit ein.

Originalpublikation:

The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud, H.E.S.S. Collaboration (corresponding authors: j.vink@uva.nl, nukri.komin@wits.ac.za, chia-chun.lu@mpi-hd.mpg.de, michael.mayer@physik.hu-berlin.de, stefan.ohm@desy.de), Science 347, DOI: 10.1126/science.1261313 (23.01.2015)

Kontakt:

Prof. Dr. Werner Hofmann
MPI für Kernphysik, Heidelberg
E-Mail: werner.hofmann@mpi-hd.mpg.de
Tel: +496221 516330

Prof. Dr. Christian Stegmann (Sprecher der H.E.S.S.-Kollaboration)
DESY Zeuthen
E-Mail: christian.stegmann@desy.de
Tel: +4933762 77416

Weitere Informationen:

http://www.mpi-hd.mpg.de/HESS - H.E.S.S.-Homepage
http://www.mpi-hd.mpg.de/HESS/pages/about/ - H.E.S.S-Instrumen

Dr. Bernold Feuerstein | Max-Planck-Institut für Kernphysik

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Waschen für die Mikrowelt – Potsdamer Physiker entwickeln lichtempfindliche Seife
02.12.2016 | Universität Potsdam

nachricht Quantenreibung: Jenseits der Näherung des lokalen Gleichgewichts
01.12.2016 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie