Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizient und robust: Warum Quantentransport auch in ungeordneten molekularen Strukturen nahezu optimal sein kann

09.08.2013
Geometrische Eigenschaften, die es auch in ungeordneten molekularen Strukturen ermöglichen, dass Wellen sich überlagern und gegenseitig verstärken

Ein Team um den theoretischen Physiker Dr. Florian Mintert und den Biophysiker Dr. Francesco Rao, die als Junior Fellows der School of Soft Matter Research am Freiburg Institute for Advanced Studies (FRIAS) der Albert-Ludwigs-Universität forschen, beschäftigt sich in einer aktuellen Studie mit den Bedingungen und Gesetzen des Quantentransports.

Angesichts einer drohenden globalen Energiekrise verspricht der Einsatz erneuerbarer Energien wie der Solarenergie große Chancen für eine nachhaltige Entwicklung. Seit Millionen von Jahren nutzen Lebewesen Sonnenenergie bei der Photosynthese. Dabei wandeln Pflanzen mithilfe von Lichtenergie energieärmere Stoffe in energiereiche um.

Quantentransport spielt bei der Photosynthese eine wichtige Rolle. Er beruht auf einem empfindlichen Zustand, der zu konstruktiver Interferenz führt, sodass sich Wellen überlagern und gegenseitig verstärken. Dieser Zustand setzt üblicherweise eine stark kontrollierte Umgebung und sehr niedrige Temperaturen voraus. Mithilfe von theoretischen Modellen und komplexen Netzwerkanalysen beschreiben die Freiburger Wissenschaftler nun zentrale geometrische Eigenschaften, die konstruktive Interferenz auch in ungeordneten Medien wie molekularen Strukturen ermöglichen.

Insbesondere eine Unterteilung des Mediums in aktive und inaktive Komponenten macht den Transport sowohl effizient als auch robust gegen thermische Fluktuationen, also Bewegung der einzelnen Komponenten. Die Kombination dieser Eigenschaften als Konstruktionsprinzip würde es erlauben, molekulare Strukturen herzustellen, die selbst bei suboptimaler Kontrolle über die exakte Geometrie immer noch optimale Effizienz erzielen.

Die Studie ist das Ergebnis einer interdisziplinären Zusammenarbeit zwischen zwei Nachwuchsgruppen am FRIAS, bei der Wissen über Quantensysteme und molekulare Prozesse mit der Analyse komplexer Netzwerke zusammengeflossen ist. Die Arbeit unterstreicht die Notwendigkeit fachübergreifender Kooperationen, um anspruchsvolle wissenschaftliche Probleme bearbeiten und lösen zu können.

Originalveröffentlichung:
Stefano Mostarda, Federico Levi, Diego Prada-Gracia, Florian Mintert, Francesco Rao (2013). Structure–dynamics relationship in coherent transport through disordered systems. Nature Communications 4, doi:10.1038/ncomms3296.

Volltext: http://www.nature.com/ncomms/2013/130807/ncomms3296/full/ncomms3296.html

Kontakt:
Dr. Florian Mintert / Dr. Francesco Rao
Tel.: 0761/203-97443 / 97336
Fax: 0761/203-97451
E-Mail:
florian.mintert@frias.uni-freiburg.de
francesco.rao@frias.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.frias.uni-freiburg.de

Weitere Berichte zu: FRIAS Interferenz Photosynthese Quantentransport

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Proteintransport - Stau in der Zelle
24.03.2017 | Ludwig-Maximilians-Universität München

nachricht Neuartige Halbleiter-Membran-Laser
22.03.2017 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Im Focus: Designer-Proteine falten DNA

Florian Praetorius und Prof. Hendrik Dietz von der Technischen Universität München (TUM) haben eine neue Methode entwickelt, mit deren Hilfe sie definierte Hybrid-Strukturen aus DNA und Proteinen aufbauen können. Die Methode eröffnet Möglichkeiten für die zellbiologische Grundlagenforschung und für die Anwendung in Medizin und Biotechnologie.

Desoxyribonukleinsäure – besser bekannt unter der englischen Abkürzung DNA – ist die Trägerin unserer Erbinformation. Für Prof. Hendrik Dietz und Florian...

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungen

Lebenswichtige Lebensmittelchemie

23.03.2017 | Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rund 500 Fachleute aus Wissenschaft und Wirtschaft diskutierten über technologische Zukunftsthemen

24.03.2017 | Veranstaltungsnachrichten

Förderung des Instituts für Lasertechnik und Messtechnik in Ulm mit rund 1,63 Millionen Euro

24.03.2017 | Förderungen Preise

TU-Bauingenieure koordinieren EU-Projekt zu Recycling-Beton von über sieben Millionen Euro

24.03.2017 | Förderungen Preise