Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effizient und robust: Warum Quantentransport auch in ungeordneten molekularen Strukturen nahezu optimal sein kann

09.08.2013
Geometrische Eigenschaften, die es auch in ungeordneten molekularen Strukturen ermöglichen, dass Wellen sich überlagern und gegenseitig verstärken

Ein Team um den theoretischen Physiker Dr. Florian Mintert und den Biophysiker Dr. Francesco Rao, die als Junior Fellows der School of Soft Matter Research am Freiburg Institute for Advanced Studies (FRIAS) der Albert-Ludwigs-Universität forschen, beschäftigt sich in einer aktuellen Studie mit den Bedingungen und Gesetzen des Quantentransports.

Angesichts einer drohenden globalen Energiekrise verspricht der Einsatz erneuerbarer Energien wie der Solarenergie große Chancen für eine nachhaltige Entwicklung. Seit Millionen von Jahren nutzen Lebewesen Sonnenenergie bei der Photosynthese. Dabei wandeln Pflanzen mithilfe von Lichtenergie energieärmere Stoffe in energiereiche um.

Quantentransport spielt bei der Photosynthese eine wichtige Rolle. Er beruht auf einem empfindlichen Zustand, der zu konstruktiver Interferenz führt, sodass sich Wellen überlagern und gegenseitig verstärken. Dieser Zustand setzt üblicherweise eine stark kontrollierte Umgebung und sehr niedrige Temperaturen voraus. Mithilfe von theoretischen Modellen und komplexen Netzwerkanalysen beschreiben die Freiburger Wissenschaftler nun zentrale geometrische Eigenschaften, die konstruktive Interferenz auch in ungeordneten Medien wie molekularen Strukturen ermöglichen.

Insbesondere eine Unterteilung des Mediums in aktive und inaktive Komponenten macht den Transport sowohl effizient als auch robust gegen thermische Fluktuationen, also Bewegung der einzelnen Komponenten. Die Kombination dieser Eigenschaften als Konstruktionsprinzip würde es erlauben, molekulare Strukturen herzustellen, die selbst bei suboptimaler Kontrolle über die exakte Geometrie immer noch optimale Effizienz erzielen.

Die Studie ist das Ergebnis einer interdisziplinären Zusammenarbeit zwischen zwei Nachwuchsgruppen am FRIAS, bei der Wissen über Quantensysteme und molekulare Prozesse mit der Analyse komplexer Netzwerke zusammengeflossen ist. Die Arbeit unterstreicht die Notwendigkeit fachübergreifender Kooperationen, um anspruchsvolle wissenschaftliche Probleme bearbeiten und lösen zu können.

Originalveröffentlichung:
Stefano Mostarda, Federico Levi, Diego Prada-Gracia, Florian Mintert, Francesco Rao (2013). Structure–dynamics relationship in coherent transport through disordered systems. Nature Communications 4, doi:10.1038/ncomms3296.

Volltext: http://www.nature.com/ncomms/2013/130807/ncomms3296/full/ncomms3296.html

Kontakt:
Dr. Florian Mintert / Dr. Francesco Rao
Tel.: 0761/203-97443 / 97336
Fax: 0761/203-97451
E-Mail:
florian.mintert@frias.uni-freiburg.de
francesco.rao@frias.uni-freiburg.de

Rudolf-Werner Dreier | Uni Freiburg im Breisgau
Weitere Informationen:
http://www.frias.uni-freiburg.de

Weitere Berichte zu: FRIAS Interferenz Photosynthese Quantentransport

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Raumschrott im Fokus
22.05.2018 | Universität Bern

nachricht Countdown für Kilogramm, Kelvin und Co.
18.05.2018 | Physikalisch-Technische Bundesanstalt (PTB)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics