Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effektive Graphendotierung abhängig von Trägermaterial

29.03.2016

Jülicher Physikerinnen und Physiker haben unerwartete Effekte in dotiertem, das heißt mit Fremdatomen versetztem, Graphen entdeckt. Sie untersuchten mit Stickstoff – als Fremdatom – angereicherte Proben der Kohlenstoffverbindung auf unterschiedlichen Trägermaterialen. Ungewollte Wechselwirkungen mit diesen Substraten können die elektrischen Eigenschaften des Graphens beeinflussen. Jetzt haben die Forscher des Peter-Grünberg-Instituts gezeigt, dass auch die effektive Dotierung von der Wahl des Trägermaterials abhängt. Ihre Ergebnisse wurden nun in der Fachzeitschrift Physical Review Letters veröffentlicht.

Es ist härter als Diamant und stabiler als Stahl, dazu leicht, durchsichtig, biegsam und extrem leitfähig: Das "Maschendrahtmaterial" Graphen gilt als Werkstoff der Zukunft. Es könnte Computer schneller, Handys flexibler und Touchscreens dünner machen.


Probe in ARPES: Die Wissenschaftler benutzten winkelauflösende Photoelektronen-Spektroskopie (Angle-Resolved Photo Electron Spectroscopy), um die Dotierung der Graphen-Proben zu bestimmen.

Copyright: Forschungszentrum Jülich


Gitterstrukturen von epitaktischem Monoschicht-Graphen (EMLG) und quasi-freistehendem Monoschicht-Graphen (QFMLG), vor der Dotierung mit Stickstoff (links) und danach (rechts).

Copyright: Forschungszentrum Jülich

Doch bis jetzt ist eine industrielle Herstellung des nur ein Atom dicken Kohlenstoff-Gitters problematisch. Fast immer ist ein Trägermaterial notwendig. Die Suche nach einem geeigneten Werkstoff dafür ist eine der großen Aufgaben auf dem Weg in die praktische Anwendung. Denn treten ungewollte Wechselwirkungen auf, verliert das Graphen seine herausragenden elektrischen Eigenschaften.

Siliziumkarbid – eine kristalline Verbindung aus Silizium und Kohlenstoff – wird seit ein paar Jahren auf seine Tauglichkeit als Trägermaterial getestet. Wird das Material in einer Argon-Atmosphäre auf mehr als 1400 Grad Celsius erhitzt, kann man Graphen auf den Kristall aufwachsen lassen. Das sogenannte epitaktische Monoschicht-Graphen hat allerdings eine - sehr geringe - Wechselwirkung mit dem Substrat, die seine Elektronenbeweglichkeit einschränkt.

Um dieses Problem zu umgehen, bringt man Wasserstoff an der Grenzfläche der beiden Materialien ein – ein Verfahren das als Wasserstoff-Interkalation bekannt ist. Die Bindungen zwischen Graphen und Trägermaterial werden durch Wasserstoffatome getrennt und abgesättigt. Dies unterdrückt den elektronischen Einfluss des Siliziumkristalls, doch das Graphen bleibt mechanisch mit dem Substrat verbunden: quasi-freistehendes Monoschicht-Graphen.

Hochpräzise Messungen mit stehenden Röntgenwellen

Für praktische Anwendungen braucht man die Option, die elektrischen Eigenschaften von Graphen zu modifizieren – zum Beispiel, indem man zusätzliche Elektronen in das Material einbringt. Dies geschieht durch die gezielte "Verschmutzung" des Kohlenstoffgitters mit Fremdatomen. Für eine solche Dotierung wird das Graphen mit einem Strahl von Stickstoff-Ionen beschossen und anschließend erhitzt. Dadurch entstehen Defekte in der Gitterstruktur: Einige wenige Kohlenstoffatome – weniger als ein Prozent – lösen sich aus dem Gitter und werden durch Stickstoffatome ersetzt, die zusätzliche Elektronen mitbringen.

Wissenschaftler des Jülicher Peter-Grünberg-Instituts, Bereich "Functional Nanostructures at Surfaces" (PGI-3), haben jetzt zum ersten Mal untersucht, ob und wie die Struktur des Trägermaterials diese Dotierung beeinflusst. An der Synchrotronstrahlungsquelle Diamond Light Source im britischen Didcot, Oxfordshire, haben François C. Bocquet und seine Kollegen Proben von epitaktischem und quasi-freistehendem Monoschicht-Graphen mit Stickstoff dotiert, und seine strukturellen und elektronischen Eigenschaften untersucht. Mit stehenden Röntgenwellenfeldern konnten sie Graphen und Substrat mit einer Genauigkeit von ein paar Millionstel Mikrometer – weniger als ein Zehntel eines Atomradius – abtasten.

Auch Stickstoffatome in der Grenzschicht können dotieren

Die Ergebnisse waren überraschend. "Ein Teil der Stickstoffatome diffundierte aus dem Graphen in das Siliziumkarbid", erklärt Bocquet. "Bisher war angenommen worden, dass sich der Stickstoffbeschuss nur auf das Graphen auswirkt, nicht auf das Trägermaterial."

Trotz gleicher Behandlung zeigten die beiden Proben unterschiedliche Stickstoffkonzentrationen, aber nahezu die gleiche elektronische Dotierung: Auch wenn nicht alle Stickstoffatome in das Graphen-Gitter eingebaut wurden, stieg die Anzahl der Elektronen im Graphen dennoch so an, als ob dies der Fall wäre. Der Schlüssel zu diesem überraschenden Ergebnis liegt im unterschiedlichen Verhalten der jeweiligen Grenzschichten zwischen Graphen und Substrat. Für das epitaktische Graphen änderte sich nichts: Die Grenzschicht blieb stabil, die Struktur unverändert. Im quasi-freistehenden Graphen jedoch wurde ein Teil der Wasserstoffatome zwischen Graphen und Substrat durch Stickstoffatome ersetzt. "Wenn man das quasi-freistehende Graphen untersucht, findet man ab und zu ein Stickstoffatom unter dem Graphenteppich", so Bocquet. „Diese Stickstoffatome, obwohl nicht Teil des Graphens, können es trotzdem dotieren, ohne das Gitter zu zerstören. Dieses unerwartete Ergebnis ist sehr erfolgsversprechend für künftige Anwendungen in der Mikro- und Nanoelektronik.“

Originalveröffentlichung:

The structural and electronic properties of nitrogen-doped graphenes
Physical Review Letters (published online 24 March 2016), DOI: 10.1103/PhysRevLett.116.126805
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.126805

Ansprechpartner:

Dr. Francois C. Bocquet, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3987
E-Mail: f.bocquet@fz-juelich.de

Prof. Dr. F. Stefan Tautz, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: +49 2461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/DE/Home/home_node.html - Forschungszentrum Jülich
http://fz-juelich.de/pgi/DE/Home/home_node.html - Peter Grünberg Institut
http://fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html - Bereich Functional Nanostructures at Surfaces
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-10graphe... - Neue Formel für passendes Trägermaterial für Graphen (Pressemitteilung 15.März 2015)

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Scharfe Röntgenblitze aus dem Atomkern
17.08.2017 | Max-Planck-Institut für Kernphysik, Heidelberg

nachricht Optische Technologien für schnellere Computer / „Licht“ mit Wespentaille
16.08.2017 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie