Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Effektive Graphendotierung abhängig von Trägermaterial

29.03.2016

Jülicher Physikerinnen und Physiker haben unerwartete Effekte in dotiertem, das heißt mit Fremdatomen versetztem, Graphen entdeckt. Sie untersuchten mit Stickstoff – als Fremdatom – angereicherte Proben der Kohlenstoffverbindung auf unterschiedlichen Trägermaterialen. Ungewollte Wechselwirkungen mit diesen Substraten können die elektrischen Eigenschaften des Graphens beeinflussen. Jetzt haben die Forscher des Peter-Grünberg-Instituts gezeigt, dass auch die effektive Dotierung von der Wahl des Trägermaterials abhängt. Ihre Ergebnisse wurden nun in der Fachzeitschrift Physical Review Letters veröffentlicht.

Es ist härter als Diamant und stabiler als Stahl, dazu leicht, durchsichtig, biegsam und extrem leitfähig: Das "Maschendrahtmaterial" Graphen gilt als Werkstoff der Zukunft. Es könnte Computer schneller, Handys flexibler und Touchscreens dünner machen.


Probe in ARPES: Die Wissenschaftler benutzten winkelauflösende Photoelektronen-Spektroskopie (Angle-Resolved Photo Electron Spectroscopy), um die Dotierung der Graphen-Proben zu bestimmen.

Copyright: Forschungszentrum Jülich


Gitterstrukturen von epitaktischem Monoschicht-Graphen (EMLG) und quasi-freistehendem Monoschicht-Graphen (QFMLG), vor der Dotierung mit Stickstoff (links) und danach (rechts).

Copyright: Forschungszentrum Jülich

Doch bis jetzt ist eine industrielle Herstellung des nur ein Atom dicken Kohlenstoff-Gitters problematisch. Fast immer ist ein Trägermaterial notwendig. Die Suche nach einem geeigneten Werkstoff dafür ist eine der großen Aufgaben auf dem Weg in die praktische Anwendung. Denn treten ungewollte Wechselwirkungen auf, verliert das Graphen seine herausragenden elektrischen Eigenschaften.

Siliziumkarbid – eine kristalline Verbindung aus Silizium und Kohlenstoff – wird seit ein paar Jahren auf seine Tauglichkeit als Trägermaterial getestet. Wird das Material in einer Argon-Atmosphäre auf mehr als 1400 Grad Celsius erhitzt, kann man Graphen auf den Kristall aufwachsen lassen. Das sogenannte epitaktische Monoschicht-Graphen hat allerdings eine - sehr geringe - Wechselwirkung mit dem Substrat, die seine Elektronenbeweglichkeit einschränkt.

Um dieses Problem zu umgehen, bringt man Wasserstoff an der Grenzfläche der beiden Materialien ein – ein Verfahren das als Wasserstoff-Interkalation bekannt ist. Die Bindungen zwischen Graphen und Trägermaterial werden durch Wasserstoffatome getrennt und abgesättigt. Dies unterdrückt den elektronischen Einfluss des Siliziumkristalls, doch das Graphen bleibt mechanisch mit dem Substrat verbunden: quasi-freistehendes Monoschicht-Graphen.

Hochpräzise Messungen mit stehenden Röntgenwellen

Für praktische Anwendungen braucht man die Option, die elektrischen Eigenschaften von Graphen zu modifizieren – zum Beispiel, indem man zusätzliche Elektronen in das Material einbringt. Dies geschieht durch die gezielte "Verschmutzung" des Kohlenstoffgitters mit Fremdatomen. Für eine solche Dotierung wird das Graphen mit einem Strahl von Stickstoff-Ionen beschossen und anschließend erhitzt. Dadurch entstehen Defekte in der Gitterstruktur: Einige wenige Kohlenstoffatome – weniger als ein Prozent – lösen sich aus dem Gitter und werden durch Stickstoffatome ersetzt, die zusätzliche Elektronen mitbringen.

Wissenschaftler des Jülicher Peter-Grünberg-Instituts, Bereich "Functional Nanostructures at Surfaces" (PGI-3), haben jetzt zum ersten Mal untersucht, ob und wie die Struktur des Trägermaterials diese Dotierung beeinflusst. An der Synchrotronstrahlungsquelle Diamond Light Source im britischen Didcot, Oxfordshire, haben François C. Bocquet und seine Kollegen Proben von epitaktischem und quasi-freistehendem Monoschicht-Graphen mit Stickstoff dotiert, und seine strukturellen und elektronischen Eigenschaften untersucht. Mit stehenden Röntgenwellenfeldern konnten sie Graphen und Substrat mit einer Genauigkeit von ein paar Millionstel Mikrometer – weniger als ein Zehntel eines Atomradius – abtasten.

Auch Stickstoffatome in der Grenzschicht können dotieren

Die Ergebnisse waren überraschend. "Ein Teil der Stickstoffatome diffundierte aus dem Graphen in das Siliziumkarbid", erklärt Bocquet. "Bisher war angenommen worden, dass sich der Stickstoffbeschuss nur auf das Graphen auswirkt, nicht auf das Trägermaterial."

Trotz gleicher Behandlung zeigten die beiden Proben unterschiedliche Stickstoffkonzentrationen, aber nahezu die gleiche elektronische Dotierung: Auch wenn nicht alle Stickstoffatome in das Graphen-Gitter eingebaut wurden, stieg die Anzahl der Elektronen im Graphen dennoch so an, als ob dies der Fall wäre. Der Schlüssel zu diesem überraschenden Ergebnis liegt im unterschiedlichen Verhalten der jeweiligen Grenzschichten zwischen Graphen und Substrat. Für das epitaktische Graphen änderte sich nichts: Die Grenzschicht blieb stabil, die Struktur unverändert. Im quasi-freistehenden Graphen jedoch wurde ein Teil der Wasserstoffatome zwischen Graphen und Substrat durch Stickstoffatome ersetzt. "Wenn man das quasi-freistehende Graphen untersucht, findet man ab und zu ein Stickstoffatom unter dem Graphenteppich", so Bocquet. „Diese Stickstoffatome, obwohl nicht Teil des Graphens, können es trotzdem dotieren, ohne das Gitter zu zerstören. Dieses unerwartete Ergebnis ist sehr erfolgsversprechend für künftige Anwendungen in der Mikro- und Nanoelektronik.“

Originalveröffentlichung:

The structural and electronic properties of nitrogen-doped graphenes
Physical Review Letters (published online 24 March 2016), DOI: 10.1103/PhysRevLett.116.126805
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.126805

Ansprechpartner:

Dr. Francois C. Bocquet, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3987
E-Mail: f.bocquet@fz-juelich.de

Prof. Dr. F. Stefan Tautz, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: +49 2461 61-9054
Email: r.panknin@fz-juelich.de

Weitere Informationen:

http://www.fz-juelich.de/portal/DE/Home/home_node.html - Forschungszentrum Jülich
http://fz-juelich.de/pgi/DE/Home/home_node.html - Peter Grünberg Institut
http://fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html - Bereich Functional Nanostructures at Surfaces
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-10graphe... - Neue Formel für passendes Trägermaterial für Graphen (Pressemitteilung 15.März 2015)

Annette Stettien | Forschungszentrum Jülich

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Belle II misst die ersten Teilchenkollisionen
26.04.2018 | Max-Planck-Institut für Physik

nachricht Geheimnisse des Urknalls und der Dunklen Materie
26.04.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: Fraunhofer ISE und teamtechnik bringen leitfähiges Kleben für Siliciumsolarzellen zu Industriereife

Das Kleben der Zellverbinder von Hocheffizienz-Solarzellen im industriellen Maßstab ist laut dem Fraunhofer-Institut für Solare Energiesysteme ISE und dem Anlagenhersteller teamtechnik marktreif. Als Ergebnis des gemeinsamen Forschungsprojekts »KleVer« ist die Klebetechnologie inzwischen so weit ausgereift, dass sie als alternative Verschaltungstechnologie zum weit verbreiteten Weichlöten angewendet werden kann. Durch die im Vergleich zum Löten wesentlich niedrigeren Prozesstemperaturen können vor allem temperatursensitive Hocheffizienzzellen schonend und materialsparend verschaltet werden.

Dabei ist der Durchsatz in der industriellen Produktion nur geringfügig niedriger als beim Verlöten der Zellen. Die Zuverlässigkeit der Klebeverbindung wurde...

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Konferenz zur Marktentwicklung von Gigabitnetzen in Deutschland

26.04.2018 | Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der lange Irrweg der ADP Ribosylierung

26.04.2018 | Biowissenschaften Chemie

Belle II misst die ersten Teilchenkollisionen

26.04.2018 | Physik Astronomie

Anzeichen einer Psychose zeigen sich in den Hirnwindungen

26.04.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics