Effektive Graphendotierung abhängig von Trägermaterial

Probe in ARPES: Die Wissenschaftler benutzten winkelauflösende Photoelektronen-Spektroskopie (Angle-Resolved Photo Electron Spectroscopy), um die Dotierung der Graphen-Proben zu bestimmen. Copyright: Forschungszentrum Jülich

Es ist härter als Diamant und stabiler als Stahl, dazu leicht, durchsichtig, biegsam und extrem leitfähig: Das „Maschendrahtmaterial“ Graphen gilt als Werkstoff der Zukunft. Es könnte Computer schneller, Handys flexibler und Touchscreens dünner machen.

Doch bis jetzt ist eine industrielle Herstellung des nur ein Atom dicken Kohlenstoff-Gitters problematisch. Fast immer ist ein Trägermaterial notwendig. Die Suche nach einem geeigneten Werkstoff dafür ist eine der großen Aufgaben auf dem Weg in die praktische Anwendung. Denn treten ungewollte Wechselwirkungen auf, verliert das Graphen seine herausragenden elektrischen Eigenschaften.

Siliziumkarbid – eine kristalline Verbindung aus Silizium und Kohlenstoff – wird seit ein paar Jahren auf seine Tauglichkeit als Trägermaterial getestet. Wird das Material in einer Argon-Atmosphäre auf mehr als 1400 Grad Celsius erhitzt, kann man Graphen auf den Kristall aufwachsen lassen. Das sogenannte epitaktische Monoschicht-Graphen hat allerdings eine – sehr geringe – Wechselwirkung mit dem Substrat, die seine Elektronenbeweglichkeit einschränkt.

Um dieses Problem zu umgehen, bringt man Wasserstoff an der Grenzfläche der beiden Materialien ein – ein Verfahren das als Wasserstoff-Interkalation bekannt ist. Die Bindungen zwischen Graphen und Trägermaterial werden durch Wasserstoffatome getrennt und abgesättigt. Dies unterdrückt den elektronischen Einfluss des Siliziumkristalls, doch das Graphen bleibt mechanisch mit dem Substrat verbunden: quasi-freistehendes Monoschicht-Graphen.

Hochpräzise Messungen mit stehenden Röntgenwellen

Für praktische Anwendungen braucht man die Option, die elektrischen Eigenschaften von Graphen zu modifizieren – zum Beispiel, indem man zusätzliche Elektronen in das Material einbringt. Dies geschieht durch die gezielte „Verschmutzung“ des Kohlenstoffgitters mit Fremdatomen. Für eine solche Dotierung wird das Graphen mit einem Strahl von Stickstoff-Ionen beschossen und anschließend erhitzt. Dadurch entstehen Defekte in der Gitterstruktur: Einige wenige Kohlenstoffatome – weniger als ein Prozent – lösen sich aus dem Gitter und werden durch Stickstoffatome ersetzt, die zusätzliche Elektronen mitbringen.

Wissenschaftler des Jülicher Peter-Grünberg-Instituts, Bereich „Functional Nanostructures at Surfaces“ (PGI-3), haben jetzt zum ersten Mal untersucht, ob und wie die Struktur des Trägermaterials diese Dotierung beeinflusst. An der Synchrotronstrahlungsquelle Diamond Light Source im britischen Didcot, Oxfordshire, haben François C. Bocquet und seine Kollegen Proben von epitaktischem und quasi-freistehendem Monoschicht-Graphen mit Stickstoff dotiert, und seine strukturellen und elektronischen Eigenschaften untersucht. Mit stehenden Röntgenwellenfeldern konnten sie Graphen und Substrat mit einer Genauigkeit von ein paar Millionstel Mikrometer – weniger als ein Zehntel eines Atomradius – abtasten.

Auch Stickstoffatome in der Grenzschicht können dotieren

Die Ergebnisse waren überraschend. „Ein Teil der Stickstoffatome diffundierte aus dem Graphen in das Siliziumkarbid“, erklärt Bocquet. „Bisher war angenommen worden, dass sich der Stickstoffbeschuss nur auf das Graphen auswirkt, nicht auf das Trägermaterial.“

Trotz gleicher Behandlung zeigten die beiden Proben unterschiedliche Stickstoffkonzentrationen, aber nahezu die gleiche elektronische Dotierung: Auch wenn nicht alle Stickstoffatome in das Graphen-Gitter eingebaut wurden, stieg die Anzahl der Elektronen im Graphen dennoch so an, als ob dies der Fall wäre. Der Schlüssel zu diesem überraschenden Ergebnis liegt im unterschiedlichen Verhalten der jeweiligen Grenzschichten zwischen Graphen und Substrat. Für das epitaktische Graphen änderte sich nichts: Die Grenzschicht blieb stabil, die Struktur unverändert. Im quasi-freistehenden Graphen jedoch wurde ein Teil der Wasserstoffatome zwischen Graphen und Substrat durch Stickstoffatome ersetzt. „Wenn man das quasi-freistehende Graphen untersucht, findet man ab und zu ein Stickstoffatom unter dem Graphenteppich“, so Bocquet. „Diese Stickstoffatome, obwohl nicht Teil des Graphens, können es trotzdem dotieren, ohne das Gitter zu zerstören. Dieses unerwartete Ergebnis ist sehr erfolgsversprechend für künftige Anwendungen in der Mikro- und Nanoelektronik.“

Originalveröffentlichung:

The structural and electronic properties of nitrogen-doped graphenes
Physical Review Letters (published online 24 March 2016), DOI: 10.1103/PhysRevLett.116.126805
http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.126805

Ansprechpartner:

Dr. Francois C. Bocquet, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-3987
E-Mail: f.bocquet@fz-juelich.de

Prof. Dr. F. Stefan Tautz, Peter Grünberg Institut
Functional Nanostructures at Surfaces (PGI-3)
Tel. +49 2461 61-4561
E-Mail: s.tautz@fz-juelich.de

Pressekontakt:

Dr. Regine Panknin
Unternehmenskommunikation
Tel.: +49 2461 61-9054
Email: r.panknin@fz-juelich.de

http://www.fz-juelich.de/portal/DE/Home/home_node.html – Forschungszentrum Jülich
http://fz-juelich.de/pgi/DE/Home/home_node.html – Peter Grünberg Institut
http://fz-juelich.de/pgi/pgi-3/EN/Home/home_node.html – Bereich Functional Nanostructures at Surfaces
http://www.fz-juelich.de/SharedDocs/Pressemitteilungen/UK/DE/2015/15-03-10graphe… – Neue Formel für passendes Trägermaterial für Graphen (Pressemitteilung 15.März 2015)

Media Contact

Annette Stettien Forschungszentrum Jülich

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer