Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Echtzeit-Spurengasanalyse mit Frequenzkämmen

01.12.2009
Wissenschaftlerteam am MPQ analysiert breitbandige Absorptionsspektren von molekularen Spurengasen durch Kombination von zwei Frequenzkämmen mit einem Überhöhungsresonator.

Spurengase haben wegen ihrer hohen Reaktivität einen starken Einfluss auf chemische Abläufe, z.B. in der Atmosphäre, auch wenn sie nur in extrem kleinen Anteilen, etwa einem auf eine Milliarde Moleküle, vorkommen.

Ihr spektroskopischer Nachweis ist daher von höchstem Interesse. Gegenwärtig gibt es jedoch keine Instrumente, mit denen sich die breitbandigen Absorptionsspektren dieser komplexen Moleküle gleichzeitig schnell, empfindlich und mit hoher Auflösung gewinnen lassen. Eine Kollaboration [1] von Wissenschaftlern um Professor Theodor W. Hänsch (Max-Planck-Institut für Quantenoptik und Ludwig-Maximilians-Universität München) und Dr. Nathalie Picqué (MPQ und Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique, Orsay, Frankreich) sowie der Universität Tokyo (Chiba, Japan) hat nun ein neues, auf Frequenzkämmen basierendes Messgerät realisiert, das alle Anforderungen auf einmal erfüllt: es analysiert Spektren in einem großen Frequenzbereich schnell, hochempfindlich und hochauflösend. (Nature Photonics, AOP, January 2010 DOI:10.1038/nphoton.2009.217)

Das Spektrum von chemischen Elementen oder Verbindungen ist gleichsam ihr 'Fingerabdruck', über den sie identifiziert werden können. Bei komplexen Molekülen wird seine Analyse jedoch dadurch erschwert, dass es sehr viele auf Vibrations- und Rotationsschwingungen zurückgehende Linien enthält, die noch dazu schwach ausgeprägt sind. Die Verwendung eines sogenannten Frequenzkamms, für dessen Entwicklung Prof. Theodor W. Hänsch 2005 den Nobelpreis für Physik erhielt, bietet hier völlig neue Perspektiven: durch die präzise Kontrolle eines modengekoppelten Lasers wird ein Frequenzspektrum erzeugt, das sich über eine Oktave erstrecken kann und etwa eine Million Linien in exakt gleichem Abstand enthält. Damit ist es nun möglich, viele Übergänge des Moleküls auf einen Schlag anzuregen.

In dem hier beschriebenen Experiment wird das gesamte Spektrum eines ersten Frequenzkammes in einen Resonator hoher Güte eingekoppelt, der eine geringe Menge eines Spurengases enthält. Durch mehrfache Reflexionen innerhalb des Resonators wird die Strecke, auf der das Licht mit der Probe in Wechselwirkung treten kann, um ein Vielfaches verlängert. Dies verstärkt das molekulare Absorptionssignal um mehrere Größenordnungen. Das vom Resonator durchgelassene Licht weist ein breites Spektrum von Absorptionslinien auf. Für dessen Analyse wird nun ein zweiter Frequenzkamm verwendet, dessen Pulswiederholrate geringfügig von der des ersten abweicht. Die dadurch entstehenden Schwebungen bilden das optische Absorptionsspektrum der gasförmigen Probe ab. Dieses Fouriertransform-Spektrometer ohne bewegliche Komponenten ist eine Million Mal schneller als das in der analytischen Wissenschaft traditionell verwendete abtastende Michelson-Interferometer. Das hier beschriebene "Resonator-überhöhte Zwei-Kamm-Spektrometer" könnte eines der leistungsfähigsten Geräte in der hochempfindlichen Spektroskopie werden - ohne dass dabei auf hohe Auflösung, breitbandige Spektren und hohe Geschwindigkeit der Messung verzichtet werden muss.

Die Doktorandin Birgitta Bernhardt hat zusammen mit den Doktoranden Akira Ozawa und Patrick Jacquet ein Experiment durchgeführt, das die Umsetzbarkeit dieser Idee beweist. Mit Ytterbium-basierten Faserfrequenzkämmen, die bei einer Wellenlänge von 1040 nm (Nahes Infrarot) emittieren, war es erstmals möglich, das komplizierte Spektrum der Oberschwingungen von Ammoniak aufzulösen, einer Verbindung, die sowohl für Planetologen als auch für Umweltforscher von großem Interesse ist. Darüber hinaus wurde das Spektrum in nur 18 Mikrosekunden gemessen, d.h. 100 Mal schneller als mit der bislang modernsten Messtechnik, bei gleichzeitig zwanzig Mal höherer Empfindlichkeit. "Da wir so empfindliche Spektren alle zwanzig Mikrosekunden aufnehmen können, bietet unsere Methode ein unglaubliches Potential, um chemische Reaktionen spektroskopisch zu beobachten. Darüberhinaus können wir unser Konzept auf jeden beliebigen Bereich des elektromagnetischen Spektrums ausdehnen, insbesondere auf den mittleren Infrarotbereich, für den es zur Zeit noch keine guten Echtzeit-Methoden gibt. Hier würde die Verwendung der "Resonator-überhöhten Zwei-Kamm-Methode" garantieren, eine Vielzahl von z.B. für die Atomsphäre wichtigen Molekülen nachzuweisen, auch wenn sie nur in Konzentrationen von einem Millionstel Promille vorliegen", erklärt Birgitta Bernhardt.

Der hochempfindliche Nachweis von Spurengasen gewinnt in vielen Bereichen der angewandten Wissenschaften an Bedeutung, angefangen mit der Biomedizin bis hin zur Beobachtung der Umwelt oder der analytischen Chemie, Plasmaphysik und Laborspektroskopie zur Unterstützung der Astrophysik. Für die "Resonator-überhöhte Zwei-Kamm-Spektroskopie-Technik" ergeben sich hier immer neue Einsatzmöglichkeiten. [Olivia Meyer-Streng]

[1] Die Kollaboration zwischen dem Max-Planck-Institut für Quantenoptik der Max-Planck-Gesellschaft und des Laboratoire de Photophysique Moléculaire du Centre National de la Recherche Scientifique wird im Rahmen des "European Laboratory for Frequency Comb Spectroscopy" European Associated Laboratory durchgeführt.

Originalveröffentlichung:
B. Bernhardt, A. Ozawa, P. Jacquet, M. Jacquey, Y. Kobayashi, T. Udem, R. Holzwarth, G. Guelachvili, T.W. Hänsch, N. Picqué,
Cavity-enhanced dual-comb spectroscopy,
Nature Photonics, Advance Online Publication, January 2010, doi:10.1038/ nphoton.2009.217
Kontakt:
Prof. Dr. Theodor W. Hänsch
Max-Planck-Institut für Quantenoptik
Hans-Kopfermann-Straße 1
85748 Garching
Tel.: +4989 32905 712
E-Mail: t.w.haensch@mpq.mpg.de
Dr. Nathalie Picqué
Max-Planck-Institut für Quantenoptik
& Centre National de la Recherche Scientifique
Tel.: +4989 32905 290
E-Mail: nathalie.picque@u-psud.fr
Birgitta Bernhardt
Max-Planck-Institut für Quantenoptik
Tel.: +4989 32905 295
E-Mail: birgitta.bernhardt@mpq.mpg.de
Dr. Olivia Meyer-Streng
Max-Planck-Institut für Quantenoptik
Presse & Öffentlichkeitsarbeit
Tel.: +4989 32905 213
Fax: +4989 32905 200
E-Mail: olivia.meyer-streng@mpq.mpg.de

Dr. Olivia Meyer-Streng | Max-Planck-Institut
Weitere Informationen:
http://www.mpq.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion
23.06.2017 | Max-Planck-Institut für Astrophysik

nachricht Individualisierte Faserkomponenten für den Weltmarkt
22.06.2017 | Laser Zentrum Hannover e.V. (LZH)

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften