Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn Dynamik in der Statik verschlüsselt ist

18.08.2011
Jun.-Prof. Dr. Harvey Meyer legt Formel vor, wodurch erstmalig die Berechnung eines wichtigen Streuprozesses in der Teilchenphysik möglich wird

Theorie und Praxis klaffen manchmal auseinander.

Das gilt zuweilen auch für die Physik, wenn sie die Prozesse im Innersten der Materie beschreiben und erklären will. Während Experimentalphysiker immer genauere Messungen vornehmen und tiefer in die Bestandteile der Materie vordringen, stoßen die Modelle der Theoretiker zunehmend an ihre Grenzen.

Harvey Meyer, theoretischer Physiker am Institut für Kernphysik der Johannes Gutenberg-Universität Mainz, hat nun eine Formel entwickelt, die eine wesentlich genauere Berechnung bestimmter wichtiger Prozesse bei subatomaren Teilchen ermöglicht. Zum einen zeigt er damit, dass auch dynamische, zeitabhängige Größen mittels Computersimulationen gerechnet werden können. Zum anderen könnte dadurch eine Annäherung an die Ergebnisse der Experimentalphysiker auf einem wichtigen Forschungsfeld erfolgen.

Meyer entwickelte seine Formel für einen wichtigen sogenannten Streuprozess bei Elementarteilchen: die Kollision von einem Elektron und seinem Antiteilchen, dem Positron. Bei dem Zusammenstoß verschwinden beide Teilchen, es kommt zur Paarvernichtung und es entstehen nun zwei unterschiedlich geladene Pionen. Ein Pion ist kein Elementarteilchen, sondern es besteht aus Quarks und Gluonen.

Die Tatsache, dass die Pionen eine komplexe innere Struktur haben, macht die Rechnung des Streuprozesses mit traditionellen Methoden - Papier und Bleistift - unmöglich. Meyers Formel baut auf dem Vorschlag von Michael Creutz aus den 70er Jahren auf, wonach die komplexe Dynamik der Quarks und Gluonen stattdessen mittels Computersimulationen berechnet werden kann. Creutz ist Wissenschaftler am Brookhaven National Laboratory und derzeit als Forschungspreisträger der Alexander von Humboldt-Stiftung zu Gast bei Univ.-Prof. Dr. Hartmut Wittig am Institut für Kernphysik in Mainz. In seiner Arbeit „Lattice QCD and the Timelike Pion Form Factor“ beschreibt Harvey Meyer nun, wie der dynamische Prozess bei der Teilchenkollision zu berechnen ist. Er verwendet dazu einen Trick, den zuvor die Physiker Lellouch und Lüscher auf den Zerfall eines Kaons in zwei Pionen angewandt haben und der darauf basiert, dass die Dynamik der Pionen in ihren stationären Quantenzuständen in einem begrenzten Volumen verschlüsselt ist. Die neue Formel zeigt, wie der Streuprozess aus diesen Quantenzuständen bestimmt werden kann und macht ihn dadurch für Computersimulationen zugänglich.

Die Bedeutung dieses Prozesses liegt vor allem darin, dass er den Beitrag der Quarks und Gluonen zum magnetischen Moment des Myons – ein sehr wichtiger Indikator in der Teilchenphysik – bestimmt. Die bislang genaueste direkte Messung des magnetischen Moments wurde 2001 in einem Experiment am Brookhaven National Laboratory auf Long Island erzielt. Sie entspricht ungefähr der Bestimmung der Distanz zwischen Paris und New York mit einer Genauigkeit von einem Millimeter. Die theoretische Rechnung derselben Größe anhand des Standardmodells – die derzeit noch gängige Theorie, um die Elementarteilchen und ihre Wechselwirkungen zu beschreiben – ergibt ein deutlich abweichendes Ergebnis. „Es ist wichtig, die Prozesse so genau und verlässlich wie möglich auszurechnen“, sagt Meyer. „Denn ein Unterschied zwischen Theorie und Experiment beim magnetischen Moment des Myons könnte auf neue Teilchen jenseits des Standardmodells hinweisen.“ Bisher wurde der schwer zu berechnende Beitrag der Quarks und Gluonen zum magnetischen Moment des Myons über den Prozess der Elektron-Positron-Paarvernichtung ausgedrückt und experimentell gemessen. Nun ist es auch möglich, diesen Prozess mittels Computersimulationen zu berechnen und dies mit der experimentellen Messung zu vergleichen.

Neue Messungen des magnetischen Moments des Myons sind derzeit am Fermilab, einem Forschungszentrum nahe Chicago, in Planung. Sie lassen eine viermal größere Genauigkeit gegenüber den bisherigen experimentellen Daten erwarten, was eine entsprechende Verfeinerung der Standard-Modell-Vorhersage verlangt. Die Experimentalphysiker Univ.-Prof. Dr. Achim Denig und Dr. Miriam Fritsch an der Johannes Gutenberg-Universität tragen dazu wesentlich bei, indem sie experimentelle Elektron-Positron-Präzisionsdaten sorgfältig analysieren. Gleichzeitig steuern Theoretiker um Hartmut Wittig neue Beiträge zur theoretischen Vorhersage des myonischen magnetischen Moments mittels Simulationen auf dem lokalen Rechnercluster „Wilson“ bei.

Die Arbeiten dieser Wissenschaftler sind in das Mainzer Exzellenzcluster „Precision Physics, Fundamental Interactions and Structure of Matter" (PRISMA) integriert, das den wichtigen Schritt in die abschließende Auswahlrunde der Bundesexzellenzinitiative geschafft hat und nun einen ausführlichen Förderantrag stellt, um in der zweiten Runde der Exzellenzinitiative zu reüssieren.

Veröffentlichung:
Lattice QCD and the Timelike Pion Form Factor
Harvey B. Meyer
Physical Review Letters, 12 August 2011, Vol.107, No.7
DOI: 10.1103/PhysRevLett.107.072002
Weitere Informationen:
Jun.-Prof. Dr. Harvey B. Meyer
Institut für Kernphysik
Johannes Gutenberg-Universität Mainz (JGU)
D 55099 Mainz
Tel. +49 6131 39-20350
Fax +49 6131 39-25474
E-Mail: meyerh@kph.uni-mainz.de
http://wwwkph.kph.uni-mainz.de/T/861.php (Jun.-Prof. Dr. Harvey B. Meyer)

Petra Giegerich | idw
Weitere Informationen:
http://wwwkph.kph.uni-mainz.de/T/861.php

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Heiß & kalt – Gegensätze ziehen sich an
25.04.2017 | Universität Wien

nachricht Astronomen-Team findet Himmelskörper mit „Schmauchspuren“
25.04.2017 | Rheinische Friedrich-Wilhelms-Universität Bonn

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Berührungslose Schichtdickenmessung in der Qualitätskontrolle

25.04.2017 | Veranstaltungen

Forschungsexpedition „Meere und Ozeane“ mit dem Ausstellungsschiff MS Wissenschaft

24.04.2017 | Veranstaltungen

3. Bionik-Kongress Baden-Württemberg

24.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Neuer Blue e+ Chiller von Rittal - Exakt regeln und effizient kühlen

25.04.2017 | HANNOVER MESSE

RWI/ISL-Containerumschlag-Index: Kräftiger Anstieg setzt sich fort

25.04.2017 | Wirtschaft Finanzen

Pharmacoscopy: Mikroskopie der nächsten Generation

25.04.2017 | Medizintechnik