Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch mit einer Kette aus Goldatomen

17.02.2017

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Die präzise Kontrolle des Elektronentransportes in der Mikroelektronik ermöglicht komplexe logische Schaltungen, wie sie täglich in Smartphones und Laptops genutzt werden. Von ähnlich fundamentaler Bedeutung ist der Wärmetransport, der bei sich immer weiter verkleinernden Chips beispielsweise für die Kühlung entscheidend ist.


Künstlerische Sicht auf die thermische Leitwertquantisierung in einem atomar dünnen Goldkontakt.

Erstellt von Enrique Sahagun


(von rechts nach links): Prof. Dr. Peter Nielaba, Manuel Matt, Jan Klöckner und Jun.-Prof. Dr. Fabian Pauly.

Foto: Universität Konstanz

Einem internationalen Team unter Mitwirkung der Konstanzer theoretischen Physiker Jun.-Prof. Dr. Fabian Pauly und Prof. Dr. Peter Nielaba sowie Mitarbeitern ist nun ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes gelungen. So konnte die Quantisierung des elektronischen Beitrages zum Wärmeleitwert für ein in der Nanophysik experimentell recht einfach zu realisierendes System demonstriert werden: Ketten aus Goldatomen.

Die Studie zeigt außerdem, dass auf der quantenmechanischen Ebene der Atome mit dem Wiedemann-Franz-Gesetz eine Beziehung der klassischen Physik gilt. Die Ergebnisse sind im renommierten Wissenschaftsjournal „Science“ vom 16. Februar 2017 veröffentlicht.

Das Versuchsobjekt ist zunächst ein dicker Golddraht. Der wird so lange gezogen, bis sein Querschnitt aus gerade einem Atom besteht und sich eine Kette aus einzelnen Goldatomen bildet, bevor der Kontakt schließlich reißt. Durch diese Kette an der absoluten Grenze der Miniaturisierung schicken die Physiker elektrischen Strom, quasi durch den denkbar dünnsten Draht.

Mit Hilfe verschiedener theoretischer Modelle lässt sich der Leitwert des elektrischen Transports berechnen und auch experimentell bestätigen. Dieser Leitwert besagt, wie viel Ladungsstrom bei einer angelegten elektrischen Spannung fließt. Der thermische Leitwert, der den Wärmefluss für eine anliegende Temperaturdifferenz angibt, konnte bisher für solche atomaren Drähte aber noch nicht gemessen werden.

Dabei stellte sich die Frage, ob das Wiedemann-Franz-Gesetz, das auf der Makroebene die Beziehung zwischen dem elektrischen Leitwert und dem thermischen Leitwert von Elektronen als proportional beschreibt, auch auf der atomaren Skala gültig bleibt. Im Allgemeinen wird der Wärmetransport in Nanodrähten sowohl durch Elektronen als auch durch Atomschwingungen (die auch Vibrationen oder Phononen genannt werden) bestimmt. Auf der atomaren Ebene müssen beide, Elektronen und Phononen, quantenmechanisch beschrieben werden. Da das Wiedemann-Franz-Gesetz allerdings nur die elektronischen Größen in Beziehung setzt, musste zunächst ermittelt werden, wie hoch der Beitrag der Phononen zum thermischen Leitwert ist.

Die beiden Doktoranden Jan Klöckner und Manuel Matt konnten komplementäre theoretische Berechnungen durchführen, die zum Ergebnis hatten, dass der Phononen-Anteil zum Wärmetransport durch die atomar dünnen Golddrähte typischerweise unter zehn Prozent liegt und damit in diesen metallischen Kontakten keine wesentliche Rolle spielt. Die Simulationen bestätigen gleichzeitig die Anwendbarkeit des Wiedemann-Franz-Gesetzes.

Während Manuel Matt dabei den elektronischen Anteil des thermischen Leitwerts anhand einer effizienten, aber etwas ungenaueren Methode berechnete, die eine Statistik erlaubt, benutzte Jan Klöckner die Dichtefunktionaltheorie, um elektronische und phononische Anteile für einzelne Kontaktgeometrien gegeneinander abzuschätzen. Aus der Quantisierung des elektrischen Leitwertes in Einheiten des sogenannten Leitwertquants (dem Zweifachen der inversen Klitzing-Konstante 2e2/h) folgt mit dem geringen Phononen-Beitrag und dem Wiedemann-Franz-Gesetz die Quantisierung des thermischen Leitwertes, die im Experiment bestätigt wurde.

Wie Ladungs- und Wärmeströme in Nanostrukturen fließen, konnte anhand von Computermodellen, wie sie in den letzten Jahren in den Gruppen von Fabian Pauly und Peter Nielaba entwickelt wurden, schon länger theoretisch berechnet werden. Um die Vorhersagen mit experimentellen Ergebnissen vergleichen zu können, war ein hochpräziser Versuchsaufbau wie der der beiden experimentellen Kollegen Prof. Edgar Meyhofer und Prof. Pramod Reddy von der University of Michigan (USA) nötig.

In bisherigen Versuchen stellten sich die Signale, die vom Wärmefluss durch die Einzelatomkontakte ausgingen, als zu klein heraus. Der Gruppe aus Michigan ist es gelungen, das Experiment so zu verbessern, dass das tatsächliche Signal herausgefiltert und gemessen werden konnte.

Die Ergebnisse der Studie ermöglichen nun, dass neben atomaren Kontakten aus Gold auch beliebige andere Nanosysteme von dieser Größenordnung untersucht werden können. Sie liefern ein paradigmatisches System für die experimentelle und theoretische Erforschung von zahlreichen fundamentalen Quantenphänomenen, die nicht zuletzt zu einer effizienten Energienutzung, beispielsweise im Rahmen der Thermoelektrizität, beitragen können.

Originalveröffentlichung:
Longji Cui, Wonho Jeong, Sunghoon Hur, Manuel Matt, Jan C. Klöckner, Fabian Pauly, Peter Nielaba, Juan Carlos Cuevas, Edgar Meyhofer, Pramod Reddy: Quantized Thermal Transport in Single Atom Junctions, Science 16 February 2017. Vol 291, Issue 5507. http://science.sciencemag.org/lookup/doi/10.1126/science.

Faktenübersicht:
• Die Studie wurde an der Universität Konstanz im Rahmen des Sonderforschungsbereichs (SFB) 767 „Controlled Nanosystems“ durchgeführt
• Co-Autor Prof. Juan Carlos Cuevas von der Universidad Autónoma de Madrid (Spanien) ist Mercator Fellow der Deutschen Forschungsgemeinschaft (DFG) im SFB 767.
• Die Doktorarbeit von Jan Klöckner wird durch das Juniorprofessuren-Programm des Ministeriums für Wissenschaft, Forschung und Kunst (MWK) Baden-Württemberg unterstützt.
• Die Juniorprofessur von Fabian Pauly wird durch die Carl-Zeiss-Stiftung gefördert.
• Rechenzeit für die numerischen Simulationen wurde unter anderem durch die Initiative für Hochleistungsrechnen des Landes Baden-Württemberg (bwHPC) zur Verfügung gestellt.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | Universität Konstanz
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Berichte zu: Atom Atomschwingungen Elektronen Leitwert Phononen Wärmefluss Wärmetransport

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Kleinste Teilchen aus fernen Galaxien!
22.09.2017 | Bergische Universität Wuppertal

nachricht Tanzende Elektronen verlieren das Rennen
22.09.2017 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie