Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Durchbruch mit einer Kette aus Goldatomen

17.02.2017

Einem internationalen Physikerteam mit Konstanzer Beteiligung gelang im Bereich der Nanophysik ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes

Die präzise Kontrolle des Elektronentransportes in der Mikroelektronik ermöglicht komplexe logische Schaltungen, wie sie täglich in Smartphones und Laptops genutzt werden. Von ähnlich fundamentaler Bedeutung ist der Wärmetransport, der bei sich immer weiter verkleinernden Chips beispielsweise für die Kühlung entscheidend ist.


Künstlerische Sicht auf die thermische Leitwertquantisierung in einem atomar dünnen Goldkontakt.

Erstellt von Enrique Sahagun


(von rechts nach links): Prof. Dr. Peter Nielaba, Manuel Matt, Jan Klöckner und Jun.-Prof. Dr. Fabian Pauly.

Foto: Universität Konstanz

Einem internationalen Team unter Mitwirkung der Konstanzer theoretischen Physiker Jun.-Prof. Dr. Fabian Pauly und Prof. Dr. Peter Nielaba sowie Mitarbeitern ist nun ein entscheidender Durchbruch zum besseren Verständnis des Wärmetransportes gelungen. So konnte die Quantisierung des elektronischen Beitrages zum Wärmeleitwert für ein in der Nanophysik experimentell recht einfach zu realisierendes System demonstriert werden: Ketten aus Goldatomen.

Die Studie zeigt außerdem, dass auf der quantenmechanischen Ebene der Atome mit dem Wiedemann-Franz-Gesetz eine Beziehung der klassischen Physik gilt. Die Ergebnisse sind im renommierten Wissenschaftsjournal „Science“ vom 16. Februar 2017 veröffentlicht.

Das Versuchsobjekt ist zunächst ein dicker Golddraht. Der wird so lange gezogen, bis sein Querschnitt aus gerade einem Atom besteht und sich eine Kette aus einzelnen Goldatomen bildet, bevor der Kontakt schließlich reißt. Durch diese Kette an der absoluten Grenze der Miniaturisierung schicken die Physiker elektrischen Strom, quasi durch den denkbar dünnsten Draht.

Mit Hilfe verschiedener theoretischer Modelle lässt sich der Leitwert des elektrischen Transports berechnen und auch experimentell bestätigen. Dieser Leitwert besagt, wie viel Ladungsstrom bei einer angelegten elektrischen Spannung fließt. Der thermische Leitwert, der den Wärmefluss für eine anliegende Temperaturdifferenz angibt, konnte bisher für solche atomaren Drähte aber noch nicht gemessen werden.

Dabei stellte sich die Frage, ob das Wiedemann-Franz-Gesetz, das auf der Makroebene die Beziehung zwischen dem elektrischen Leitwert und dem thermischen Leitwert von Elektronen als proportional beschreibt, auch auf der atomaren Skala gültig bleibt. Im Allgemeinen wird der Wärmetransport in Nanodrähten sowohl durch Elektronen als auch durch Atomschwingungen (die auch Vibrationen oder Phononen genannt werden) bestimmt. Auf der atomaren Ebene müssen beide, Elektronen und Phononen, quantenmechanisch beschrieben werden. Da das Wiedemann-Franz-Gesetz allerdings nur die elektronischen Größen in Beziehung setzt, musste zunächst ermittelt werden, wie hoch der Beitrag der Phononen zum thermischen Leitwert ist.

Die beiden Doktoranden Jan Klöckner und Manuel Matt konnten komplementäre theoretische Berechnungen durchführen, die zum Ergebnis hatten, dass der Phononen-Anteil zum Wärmetransport durch die atomar dünnen Golddrähte typischerweise unter zehn Prozent liegt und damit in diesen metallischen Kontakten keine wesentliche Rolle spielt. Die Simulationen bestätigen gleichzeitig die Anwendbarkeit des Wiedemann-Franz-Gesetzes.

Während Manuel Matt dabei den elektronischen Anteil des thermischen Leitwerts anhand einer effizienten, aber etwas ungenaueren Methode berechnete, die eine Statistik erlaubt, benutzte Jan Klöckner die Dichtefunktionaltheorie, um elektronische und phononische Anteile für einzelne Kontaktgeometrien gegeneinander abzuschätzen. Aus der Quantisierung des elektrischen Leitwertes in Einheiten des sogenannten Leitwertquants (dem Zweifachen der inversen Klitzing-Konstante 2e2/h) folgt mit dem geringen Phononen-Beitrag und dem Wiedemann-Franz-Gesetz die Quantisierung des thermischen Leitwertes, die im Experiment bestätigt wurde.

Wie Ladungs- und Wärmeströme in Nanostrukturen fließen, konnte anhand von Computermodellen, wie sie in den letzten Jahren in den Gruppen von Fabian Pauly und Peter Nielaba entwickelt wurden, schon länger theoretisch berechnet werden. Um die Vorhersagen mit experimentellen Ergebnissen vergleichen zu können, war ein hochpräziser Versuchsaufbau wie der der beiden experimentellen Kollegen Prof. Edgar Meyhofer und Prof. Pramod Reddy von der University of Michigan (USA) nötig.

In bisherigen Versuchen stellten sich die Signale, die vom Wärmefluss durch die Einzelatomkontakte ausgingen, als zu klein heraus. Der Gruppe aus Michigan ist es gelungen, das Experiment so zu verbessern, dass das tatsächliche Signal herausgefiltert und gemessen werden konnte.

Die Ergebnisse der Studie ermöglichen nun, dass neben atomaren Kontakten aus Gold auch beliebige andere Nanosysteme von dieser Größenordnung untersucht werden können. Sie liefern ein paradigmatisches System für die experimentelle und theoretische Erforschung von zahlreichen fundamentalen Quantenphänomenen, die nicht zuletzt zu einer effizienten Energienutzung, beispielsweise im Rahmen der Thermoelektrizität, beitragen können.

Originalveröffentlichung:
Longji Cui, Wonho Jeong, Sunghoon Hur, Manuel Matt, Jan C. Klöckner, Fabian Pauly, Peter Nielaba, Juan Carlos Cuevas, Edgar Meyhofer, Pramod Reddy: Quantized Thermal Transport in Single Atom Junctions, Science 16 February 2017. Vol 291, Issue 5507. http://science.sciencemag.org/lookup/doi/10.1126/science.

Faktenübersicht:
• Die Studie wurde an der Universität Konstanz im Rahmen des Sonderforschungsbereichs (SFB) 767 „Controlled Nanosystems“ durchgeführt
• Co-Autor Prof. Juan Carlos Cuevas von der Universidad Autónoma de Madrid (Spanien) ist Mercator Fellow der Deutschen Forschungsgemeinschaft (DFG) im SFB 767.
• Die Doktorarbeit von Jan Klöckner wird durch das Juniorprofessuren-Programm des Ministeriums für Wissenschaft, Forschung und Kunst (MWK) Baden-Württemberg unterstützt.
• Die Juniorprofessur von Fabian Pauly wird durch die Carl-Zeiss-Stiftung gefördert.
• Rechenzeit für die numerischen Simulationen wurde unter anderem durch die Initiative für Hochleistungsrechnen des Landes Baden-Württemberg (bwHPC) zur Verfügung gestellt.

Kontakt:
Universität Konstanz
Kommunikation und Marketing
Telefon: + 49 7531 88-3603
E-Mail: kum@uni-konstanz.de

Julia Wandt | Universität Konstanz
Weitere Informationen:
http://www.uni-konstanz.de

Weitere Berichte zu: Atom Atomschwingungen Elektronen Leitwert Phononen Wärmefluss Wärmetransport

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Vorstoß ins Innere der Atome
23.02.2018 | Max-Planck-Institut für Quantenoptik

nachricht Quanten-Wiederkehr: Alles wird wieder wie früher
23.02.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics