Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dunkler Materie auf der Spur

06.11.2008
Supercomputer berechnen, wo Astrophysiker gezielt suchen müssen

Ein internationales Team von Astrophysikern, das Volker Springel vom Max-Planck-Institut für Astrophysik (MPA) in Garching leitet, hat jetzt mithilfe eines der größten Supercomputer Europas gezeigt, wohin das neueste Satellitenobservatorium der Nasa blicken muss, um die geheimnisvolle Dunkle Materie im Universum zu entdecken (Nature, 6. November 2008).


Projezierte Dichte der Dunklen Materie in einer simulierten Galaxie mit der Größe der Milchstraße. Myriaden von Klumpen aus Dunkler Materie kreisen in dem Halo der Galaxie. Ihre dichten Zentren strahlen energiereiche Gammastrahlung ab, die durch gegenseitige Vernichtung von Teilchen der Dunklen Materie erzeugt wird. Bild: Max-Planck-Institut für Astrophysik

Das Fermi-Teleskop, das schon seit einigen Monaten den Himmel nach Gammastrahlen durchsucht, könnte in den nächsten Jahren ein schwaches Glimmen der Dunklen Materie aufspüren. Während deren Gravitationswirkung bereits vor über 75 Jahren entdeckt wurde, bleibt die Dunkle Materie bis heute für alle Teleskope unsichtbar, obwohl sie rund 85 Prozent aller kosmischen Materie ausmacht. Unter den richtigen Bedingungen könnte diese neue Art von Elementarteilchen genügend Gammastrahlen produzieren, um vom Fermi-Teleskop entdeckt werden zu können. Darüber hinaus soll der Teilchenbeschleuniger "Large Hadron Collider" (LHC) in der Nähe von Genf Belege dafür finden.

Aber wohin soll das Fermi-Teleskop ausgerichtet werden, um die Gammastrahlen-Signatur der Dunklen Materie zu sehen? Astrophysiker aus Deutschland, Großbritannien, Kanada und den Niederlanden, die sich zum "Virgo-Konsortium" zusammengeschlossen haben, simulierten jetzt mithilfe eines extrem leistungsfähigen Supercomputers am Leibniz-Rechenzentrum in Garching die Entstehung der Strukturen Dunkler Materie, die eine Galaxie wie unsere Milchstraße umgeben. Solche Halos sind mehr als eine Billion Mal so massiv wie unsere Sonne und stellen die Grundeinheiten der kosmischen Struktur dar.

Der Halo der Milchstraße entstand vermutlich durch eine Reihe gewaltiger Kollisionen viel kleinerer Klumpen, die aus dem Urknall hervorgingen, und dann verschmolzen. Die meisten davon wurden auseinandergerissen, aber einige haben den Prozess überstanden. Die größten davon beherbergen heute bekannte Satellitengalaxien wie die Magellanschen Wolken oder die Sagittarius-Zwerggalaxie. Andere Klumpen waren zu klein, als dass Sterne aus ihnen hätten entstehen können. Astronomen vermuten aber, dass sie sich immer noch im Halo unserer Galaxie verbergen, wenngleich kein Teleskop sie bisher entdeckt hat.

Gammastrahlen werden in Regionen mit einer hohen Dichte von Dunkler Materie erzeugt, wenn die Teilchen zusammenstoßen und zerstört werden. Viele Kosmologen gehen bisher davon aus, dass das Fermi-Teleskop nach Gammastrahlen aus den Trabanten der Milchstraße suchen solle, da deren Zentren sehr dicht sind. Die Simulationen des Virgo-Teams zeigen aber, dass dies nicht der beste Ort für die Suche ist. Die sorgfältigen Berechnungen der Wissenschaftler belegen, dass Signale am leichtesten in Regionen der Milchstraße entdeckt werden könnten, die zwar innerhalb der Umlaufbahn der Sonne um das galaktische Zentrum, aber nicht zu nah an diesem liegt.

Auf der Suche nach Gammastrahlen

Genau ins Zentrum zu blicken, wäre eine schlechte Strategie für das Fermi-Teleskop. Das Signal könnte dabei durch Gammastrahlen von anderen Quellen, wie beispielsweise den Überbleibseln von Supernovae oder von Gaswolken gestört werden, in denen sich Sterne bilden. Stattdessen empfehlen die Wissenschaftler, 10 bis 30 Winkelgrade außerhalb des Zentrums zu suchen. Die Dunkle Materie sollte dort in einem sich gleichmäßig verändernden und charakteristischen Muster leuchten.

"Wenn das Teleskop tatsächlich die vorausberechnete Emission aus dem gleichmäßigen inneren Halo der Milchstraße entdeckt, dann könnte es, wenn wir Glück haben, auch Gammastrahlen aus kleinen (und ansonsten unsichtbaren) Klumpen von Dunkler Materie sehen, die zufällig besonders nah an der Sonne liegen", sagt Volker Springel, der die Rechnerkalkulation überwachte. Diese Klumpen werden deutlich lichtschwächer sein als der Haupthalo, könnten aber dennoch entdeckt werden. Die bekannten Satellitengalaxien würden ebenfalls in Gammastrahlen sichtbar sein, obwohl ihre Entdeckung aufgrund ihres größeren Abstandes noch schwieriger ist.

Die Simulation benötigte insgesamt 3,5 Millionen Rechnerstunden. "Mitunter glaubte ich, sie wird nie fertig", sagt Volker Springel.

"Diese Berechnungen erlauben uns endlich, zu sehen, wie die Verteilung der Dunklen Materie nahe der Sonne aussehen sollte", erklärt Simon White, Direktor am Max-Planck-Institut für Astrophysik. "Das Rätsel um die Dunkle Materie zu lösen, wäre eine der größten wissenschaftlichen Leistungen unserer Zeit. Es ist bemerkenswert, dass sogar theoretische Fortschritte auf einem so wichtigen Gebiet jetzt in internationaler Zusammenarbeit erzielt werden", sagt Carlos Frenk, Direktor des Institute for Computational Cosmology an der Durham University.

An der Arbeit des Virgo-Konsortiums waren Wissenschaftler des Max-Planck-Instituts für Astrophysik in Deutschland, des Institute for Computational Cosmology an der Durham University in Großbritannien, der University of Victoria in Kanada und der Universität Groningen in den Niederlanden beteiligt. Sie wurde finanziert durch die Max-Planck-Gesellschaft, das Leibniz-Rechenzentrum, den Royal Society Wolfson Research Merit Award und den Science and Technology Facilities Council.

Originalveröffentlichung:

V. Springel, S. D. M. White, C. S. Frenk, J. F. Navarro, A. Jenkins, M. Vogelsberger, J. Wang, A. Ludlow & A. Helmi
Prospects for detecting supersymmetric dark matter in the Galactic halo
Nature, 6. November 2008

Dr. Christina Beck | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Physik Astronomie:

nachricht Der überraschend schnelle Fall des Felix Baumgartner
14.12.2017 | Technische Universität München

nachricht Eine blühende Sternentstehungsregion
14.12.2017 | ESO Science Outreach Network - Haus der Astronomie

Alle Nachrichten aus der Kategorie: Physik Astronomie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten